Unknown

Dataset Information

0

Osteopontin activates mesenchymal stem cells to repair skin wound.


ABSTRACT: Mesenchymal stem cells (MSCs) are promising candidates for skin wound repair due to their capabilities of accumulating at wounds and differentiating into multiple types of skin cells. However, the underlying mechanisms responsible for these processes remain unclear. In this study, we found that osteopontin (OPN) stimulated the migration of MSCs in vitro, and observed the recruitment of endogenous MSCs to a skin wound and their differentiation into keratinocytes and endothelial cells. In OPN knock-out mice, the recruitment of MSCs to the skin wound was significantly inhibited, and wound closure was hampered after an intradermal injection of exogenous MSCs compared to wild-type mice. Consistent with these observations, the expressions of adhesion molecule CD44 and its receptor E-selectin were significantly decreased in the lesions of OPN knock-out mice compared with wild-type mice suggesting that OPN may regulate the migration of MSCs through its interactions with CD44 during skin wound recovery. In summary, our data demonstrated that OPN played a critical role in activating the migration of MSCs to injured sites and their differentiation into specific skin cell types during skin wound healing.

SUBMITTER: Wang W 

PROVIDER: S-EPMC5619734 | biostudies-other | 2017

REPOSITORIES: biostudies-other

altmetric image

Publications

Osteopontin activates mesenchymal stem cells to repair skin wound.

Wang Wenping W   Li Pei P   Li Wei W   Jiang Junzi J   Cui Yanyan Y   Li Shirong S   Wang Zhenxiang Z  

PloS one 20170928 9


Mesenchymal stem cells (MSCs) are promising candidates for skin wound repair due to their capabilities of accumulating at wounds and differentiating into multiple types of skin cells. However, the underlying mechanisms responsible for these processes remain unclear. In this study, we found that osteopontin (OPN) stimulated the migration of MSCs in vitro, and observed the recruitment of endogenous MSCs to a skin wound and their differentiation into keratinocytes and endothelial cells. In OPN knoc  ...[more]

Similar Datasets

| S-EPMC4049892 | biostudies-literature
| S-EPMC4055091 | biostudies-literature
| S-EPMC5196890 | biostudies-other
| S-EPMC6925772 | biostudies-literature
| S-EPMC7062641 | biostudies-literature
| S-EPMC3988008 | biostudies-literature
| S-EPMC4506151 | biostudies-other
| S-EPMC4817598 | biostudies-literature
| S-EPMC7279345 | biostudies-literature
| S-EPMC3537615 | biostudies-literature