Unknown

Dataset Information

0

Prediction of Effective Drug Combinations by an Improved Naive Bayesian Algorithm.


ABSTRACT: Drug combinatorial therapy is a promising strategy for combating complex diseases due to its fewer side effects, lower toxicity and better efficacy. However, it is not feasible to determine all the effective drug combinations in the vast space of possible combinations given the increasing number of approved drugs in the market, since the experimental methods for identification of effective drug combinations are both labor- and time-consuming. In this study, we conducted systematic analysis of various types of features to characterize pairs of drugs. These features included information about the targets of the drugs, the pathway in which the target protein of a drug was involved in, side effects of drugs, metabolic enzymes of the drugs, and drug transporters. The latter two features (metabolic enzymes and drug transporters) were related to the metabolism and transportation properties of drugs, which were not analyzed or used in previous studies. Then, we devised a novel improved naïve Bayesian algorithm to construct classification models to predict effective drug combinations by using the individual types of features mentioned above. Our results indicated that the performance of our proposed method was indeed better than the naïve Bayesian algorithm and other conventional classification algorithms such as support vector machine and K-nearest neighbor.

SUBMITTER: Bai LY 

PROVIDER: S-EPMC5855689 | biostudies-other | 2018 Feb

REPOSITORIES: biostudies-other

altmetric image

Publications

Prediction of Effective Drug Combinations by an Improved Naïve Bayesian Algorithm.

Bai Li-Yue LY   Dai Hao H   Xu Qin Q   Junaid Muhammad M   Peng Shao-Liang SL   Zhu Xiaolei X   Xiong Yi Y   Wei Dong-Qing DQ  

International journal of molecular sciences 20180205 2


Drug combinatorial therapy is a promising strategy for combating complex diseases due to its fewer side effects, lower toxicity and better efficacy. However, it is not feasible to determine all the effective drug combinations in the vast space of possible combinations given the increasing number of approved drugs in the market, since the experimental methods for identification of effective drug combinations are both labor- and time-consuming. In this study, we conducted systematic analysis of va  ...[more]

Similar Datasets

| S-EPMC6416394 | biostudies-literature
| S-EPMC3780555 | biostudies-literature
| S-EPMC6370570 | biostudies-literature
2023-12-19 | GSE248183 | GEO
| S-EPMC7651635 | biostudies-literature
| S-EPMC1624852 | biostudies-literature
| S-EPMC4463209 | biostudies-literature
| S-EPMC4348553 | biostudies-literature
2023-12-19 | GSE248182 | GEO
2023-12-19 | GSE248178 | GEO