Unknown

Dataset Information

0

Identification of Differentially Expressed Genes between Original Breast Cancer and Xenograft Using Machine Learning Algorithms.


ABSTRACT: Breast cancer is one of the most common malignancies in women. Patient-derived tumor xenograft (PDX) model is a cutting-edge approach for drug research on breast cancer. However, PDX still exhibits differences from original human tumors, thereby challenging the molecular understanding of tumorigenesis. In particular, gene expression changes after tissues are transplanted from human to mouse model. In this study, we propose a novel computational method by incorporating several machine learning algorithms, including Monte Carlo feature selection (MCFS), random forest (RF), and rough set-based rule learning, to identify genes with significant expression differences between PDX and original human tumors. First, 831 breast tumors, including 657 PDX and 174 human tumors, were collected. Based on MCFS and RF, 32 genes were then identified to be informative for the prediction of PDX and human tumors and can be used to construct a prediction model. The prediction model exhibits a Matthews coefficient correlation value of 0.777. Seven interpretable interactions within the informative gene were detected based on the rough set-based rule learning. Furthermore, the seven interpretable interactions can be well supported by previous experimental studies. Our study not only presents a method for identifying informative genes with differential expression but also provides insights into the mechanism through which gene expression changes after being transplanted from human tumor into mouse model. This work would be helpful for research and drug development for breast cancer.

SUBMITTER: Wang D 

PROVIDER: S-EPMC5867876 | biostudies-other | 2018 Mar

REPOSITORIES: biostudies-other

altmetric image

Publications

Identification of Differentially Expressed Genes between Original Breast Cancer and Xenograft Using Machine Learning Algorithms.

Wang Deling D   Li Jia-Rui JR   Zhang Yu-Hang YH   Chen Lei L   Huang Tao T   Cai Yu-Dong YD  

Genes 20180312 3


Breast cancer is one of the most common malignancies in women. Patient-derived tumor xenograft (PDX) model is a cutting-edge approach for drug research on breast cancer. However, PDX still exhibits differences from original human tumors, thereby challenging the molecular understanding of tumorigenesis. In particular, gene expression changes after tissues are transplanted from human to mouse model. In this study, we propose a novel computational method by incorporating several machine learning al  ...[more]

Similar Datasets

| S-EPMC9992474 | biostudies-literature
| S-EPMC9403720 | biostudies-literature
| S-EPMC10703730 | biostudies-literature
| S-EPMC10960342 | biostudies-literature
| S-EPMC8168899 | biostudies-literature
| S-EPMC7186728 | biostudies-literature
| S-EPMC6392650 | biostudies-literature
| S-EPMC4180276 | biostudies-literature
| S-EPMC10332364 | biostudies-literature
| S-EPMC7843176 | biostudies-literature