Unknown

Dataset Information

0

Multilayered Plasmonic Heterostructure of Gold and Titania Nanoparticles for Solar Fuel Production.


ABSTRACT: Solar fuel production via photoelectrochemical (PEC) water splitting has attracted great attention as an approach to storing solar energy. However, a wide range of light-harvesting materials is unstable when exposed to light and oxidative conditions. Here we report a robust, multilayered plasmonic heterostructure for water oxidation using gold nanoparticles (AuNPs) as light-harvesting materials via localized surface plasmon resonance (LSPR). The multilayered heterostructure is fabricated using layer-by-layer self-assembly of AuNPs and TiO2 nanoparticles (TNPs). Plasmon-induced hot electrons are transferred from AuNPs to TNPs over the Au/TiO2 Schottky barrier, resulting in charge separation of hot carriers. Plasmonic photoanodes for water oxidation are completed by incorporating a Co-based oxygen-evolving catalyst on the multilayered heterostructure to scavenge hot holes. Light absorption capability and PEC properties of the photoanodes are investigated as a function of the number of AuNP/TNP bilayers. The PEC properties exhibits dependence on the number of the bilayers, which is affected by charge transport within the multilayered heterostructures. Photocurrent density and decrease in impedance by irradiation indicates significant photoactivity by LSPR excitation.

SUBMITTER: Kim J 

PROVIDER: S-EPMC6041279 | biostudies-other | 2018 Jul

REPOSITORIES: biostudies-other

altmetric image

Publications

Multilayered Plasmonic Heterostructure of Gold and Titania Nanoparticles for Solar Fuel Production.

Kim Jeonga J   Son Ho Yeon HY   Nam Yoon Sung YS  

Scientific reports 20180711 1


Solar fuel production via photoelectrochemical (PEC) water splitting has attracted great attention as an approach to storing solar energy. However, a wide range of light-harvesting materials is unstable when exposed to light and oxidative conditions. Here we report a robust, multilayered plasmonic heterostructure for water oxidation using gold nanoparticles (AuNPs) as light-harvesting materials via localized surface plasmon resonance (LSPR). The multilayered heterostructure is fabricated using l  ...[more]

Similar Datasets

| S-EPMC4212914 | biostudies-literature
| S-EPMC5355850 | biostudies-literature
| S-EPMC6625417 | biostudies-literature
| S-EPMC6669669 | biostudies-literature
| S-EPMC8708662 | biostudies-literature
| S-EPMC6952777 | biostudies-literature
| S-EPMC10711720 | biostudies-literature
| S-EPMC9284560 | biostudies-literature
| S-EPMC9330258 | biostudies-literature
| S-EPMC9473205 | biostudies-literature