Unknown

Dataset Information

0

Tdp-25 Routing to Autophagy and Proteasome Ameliorates its Aggregation in Amyotrophic Lateral Sclerosis Target Cells.


ABSTRACT: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that primarily affects motoneurons, while non-neuronal cells may contribute to disease onset and progression. Most ALS cases are characterized by the mislocalization and aggregation of the TAR DNA binding protein 43 (TDP-43) in affected cells. TDP-43 aggregates contain C-terminal TDP-43 fragments of 35?kDa (TDP-35) and 25?kDa (TDP-25) and have been mainly studied in motoneurons, while little is currently known about their rate of accumulation and clearance in myoblasts. Here, we performed a comparative study in immortalized motoneuronal like (NSC34; i-motoneurons) cells and stabilized myoblasts (C2C12; s-myoblasts) to evaluate if these two cell types differentially accumulate and clear TDP forms. The most aggregating specie in i-motoneurons is the TDP-25 fragment, mainly constituted by the "prion-like" domain of TDP-43. To a lower extent, TDP-25 also aggregates in s-myoblasts. In both cell types, all TDP species are cleared by proteasome, but TDP-25 impairs autophagy. Interestingly, the routing of TDP-25 fragment to proteasome, by overexpressing BAG1, or to autophagy, by overexpressing HSPB8 or BAG3 decreased its accumulation in both cell types. These results demonstrate that promoting the chaperone-assisted clearance of ALS-linked proteins is beneficial not only in motoneurons but also in myoblasts.

SUBMITTER: Cicardi ME 

PROVIDER: S-EPMC6098007 | biostudies-other | 2018 Aug

REPOSITORIES: biostudies-other

altmetric image

Publications


Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that primarily affects motoneurons, while non-neuronal cells may contribute to disease onset and progression. Most ALS cases are characterized by the mislocalization and aggregation of the TAR DNA binding protein 43 (TDP-43) in affected cells. TDP-43 aggregates contain C-terminal TDP-43 fragments of 35 kDa (TDP-35) and 25 kDa (TDP-25) and have been mainly studied in motoneurons, while little is currently known about their r  ...[more]

Similar Datasets

| S-EPMC2658102 | biostudies-literature
| S-EPMC3661910 | biostudies-literature
| S-EPMC10901621 | biostudies-literature
| S-EPMC5901081 | biostudies-literature
| S-EPMC7116650 | biostudies-literature
| S-EPMC5917749 | biostudies-literature
| S-EPMC8699346 | biostudies-literature
2012-07-25 | E-GEOD-39644 | biostudies-arrayexpress
2003-11-14 | GSE833 | GEO
2012-07-26 | GSE39644 | GEO