Unknown

Dataset Information

0

Superoxide dismutase activity confers (p)ppGpp-mediated antibiotic tolerance to stationary-phase Pseudomonas aeruginosa.


ABSTRACT: Metabolically quiescent bacteria represent a large proportion of those in natural and host environments, and they are often refractory to antibiotic treatment. Such drug tolerance is also observed in the laboratory during stationary phase, when bacteria face stress and starvation-induced growth arrest. Tolerance requires (p)ppGpp signaling, which mediates the stress and starvation stringent response (SR), but the downstream effectors that confer tolerance are unclear. We previously demonstrated that the SR is linked to increased antioxidant defenses in Pseudomonas aeruginosa We now demonstrate that superoxide dismutase (SOD) activity is a key factor in SR-mediated multidrug tolerance in stationary-phase P. aeruginosa Inactivation of the SR leads to loss of SOD activity and decreased multidrug tolerance during stationary phase. Genetic or chemical complementation of SOD activity of the ?relA spoT mutant (?SR) is sufficient to restore antibiotic tolerance to WT levels. Remarkably, we observe high membrane permeability and increased drug internalization upon ablation of SOD activity. Combined, our results highlight an unprecedented mode of SR-mediated multidrug tolerance in stationary-phase P. aeruginosa and suggest that inhibition of SOD activity may potentiate current antibiotics.

SUBMITTER: Martins D 

PROVIDER: S-EPMC6166797 | biostudies-other | 2018 Sep

REPOSITORIES: biostudies-other

altmetric image

Publications

Superoxide dismutase activity confers (p)ppGpp-mediated antibiotic tolerance to stationary-phase <i>Pseudomonas aeruginosa</i>.

Martins Dorival D   McKay Geoffrey G   Sampathkumar Gowthami G   Khakimova Malika M   English Ann M AM   Nguyen Dao D  

Proceedings of the National Academy of Sciences of the United States of America 20180910 39


Metabolically quiescent bacteria represent a large proportion of those in natural and host environments, and they are often refractory to antibiotic treatment. Such drug tolerance is also observed in the laboratory during stationary phase, when bacteria face stress and starvation-induced growth arrest. Tolerance requires (p)ppGpp signaling, which mediates the stress and starvation stringent response (SR), but the downstream effectors that confer tolerance are unclear. We previously demonstrated  ...[more]

Similar Datasets

| S-EPMC7546422 | biostudies-literature
| S-EPMC7754856 | biostudies-literature
2011-11-21 | GSE26142 | GEO
| S-EPMC3197603 | biostudies-literature
| S-EPMC7484180 | biostudies-literature
2011-11-21 | E-GEOD-26142 | biostudies-arrayexpress
| S-EPMC177841 | biostudies-other
| S-EPMC6936868 | biostudies-literature
| S-EPMC3923063 | biostudies-literature
| S-EPMC5487641 | biostudies-literature