Unknown

Dataset Information

0

Cellulose nanocrystal cationic derivative induces NLRP3 inflammasome-dependent IL-1? secretion associated with mitochondrial ROS production.


ABSTRACT: Crystalline cellulose nanocrystals (CNCs) have emerged as novel materials for a wide variety of important applications such as nanofillers, nanocomposites, surface coatings, regenerative medicine and potential drug delivery. CNCs have a needle-like structure with sizes in the range of 100-200 nm long and 5-20 nm wide and a mean aspect ratio 10-100. Despite the great potential applicability of CNCs, very little is known about their potential immunogenicity. Needle-like materials have been known to evoke an immune response in particular to activate the (NOD-like receptor, pyrin domain-containing 3)-inflammasome/IL-1? (Interleukin 1?) pathway. In this study we evaluated the capacity of unmodified CNC and its cationic derivatives CNC-AEM (aminoethylmethacrylate)1, CNC-AEM2, CNC-AEMA(aminoethylmethacrylamide)1 and CNC-AEMA2 to stimulate NLRP3-inflammasome/IL-1? pathway and enhance the production of mitochondrial reactive oxygen species (ROS). Mouse macrophage cell line (J774A.1) was stimulated for 24 h with 50 µg/mL with unmodified CNC and its cationic derivatives. Alternatively, J774A1 or PBMCs (peripheral blood mononuclear cells) were stimulated with CNC-AEMA2 in presence or absence of LPS (lipopolysaccharide). IL-1? secretion was analyzed by ELISA, mitochondrial function by JC-1 staining and ATP content. Intracellular and mitochondrial reactive oxygen species (ROS) were assessed by DCF-DA (2',7'-dichlorodihydrofluorescein diacetate) and MitoSOX, respectively. Mitochondrial ROS and extracellular ATP were significantly increased in cells treated with CNC-AEMA2, which correlates with the strongest effects on IL-1? secretion in non-primed cells. CNC-AEMA2 also induced IL-1?secretion in LPS-primed and non-primed PBMCs. Our data suggest that the increases in mitochondrial ROS and ATP release induced by CNC-AEMA2 may be associated with its capability to evoke immune response. We demonstrate the first evidence that newly synthesized cationic cellulose nanocrystal derivative, CNC-AEMA2, has immunogenic properties, which may lead to the development of a potential non-toxic and safe nanomaterial to be used as a novel adjuvant for vaccines.

SUBMITTER: Sunasee R 

PROVIDER: S-EPMC6189697 | biostudies-other | 2015 Dec

REPOSITORIES: biostudies-other

altmetric image

Publications

Cellulose nanocrystal cationic derivative induces NLRP3 inflammasome-dependent IL-1β secretion associated with mitochondrial ROS production.

Sunasee Rajesh R   Araoye Erinolaoluwa E   Pyram Dejhy D   Hemraz Usha D UD   Boluk Yaman Y   Ckless Karina K  

Biochemistry and biophysics reports 20150814


Crystalline cellulose nanocrystals (CNCs) have emerged as novel materials for a wide variety of important applications such as nanofillers, nanocomposites, surface coatings, regenerative medicine and potential drug delivery. CNCs have a needle-like structure with sizes in the range of 100-200 nm long and 5-20 nm wide and a mean aspect ratio 10-100. Despite the great potential applicability of CNCs, very little is known about their potential immunogenicity. Needle-like materials have been known t  ...[more]

Similar Datasets

| S-EPMC4116307 | biostudies-literature
2023-06-21 | GSE233917 | GEO
| S-EPMC7330863 | biostudies-literature
| PRJNA978574 | ENA
| S-EPMC7287802 | biostudies-literature
| S-EPMC3445464 | biostudies-literature
| S-EPMC8247862 | biostudies-literature
| S-EPMC4074088 | biostudies-literature
| S-EPMC4756306 | biostudies-literature
| S-EPMC4004659 | biostudies-literature