A fast forward 3D connection algorithm for mitochondria and synapse segmentations from serial EM images.
Ontology highlight
ABSTRACT: Background:It is becoming increasingly clear that the quantification of mitochondria and synapses is of great significance to understand the function of biological nervous systems. Electron microscopy (EM), with the necessary resolution in three directions, is the only available imaging method to look closely into these issues. Therefore, estimating the number of mitochondria and synapses from the serial EM images is coming into prominence. Since previous studies have achieved preferable 2D segmentation performance, it holds great promise to obtain the 3D connection relationship from the 2D segmentation results. Results:In this paper, we improve upon Matlab's function bwconncomp and propose a fast forward 3D connection algorithm for mitochondria and synapse segmentations from serial EM images. To benchmark the performance of the proposed method, two EM datasets with the annotated ground truth are produced for mitochondria and synapses, respectively. Experimental results show that the proposed method can achieve the preferable connection performance that closely matches the ground truth. Moreover, it greatly reduces the computational burden and alleviates the memory requirements compared with the function bwconncomp. Conclusions:The proposed method can be deemed as an effective strategy to obtain the 3D connection relationship from serial mitochondria and synapse segmentations. It is helpful to accurately and quickly quantify the statistics of the numbers, volumes, surface areas, and lengths, which will greatly facilitate the data analysis of neurobiology research.
SUBMITTER: Li W
PROVIDER: S-EPMC6217761 | biostudies-other | 2018
REPOSITORIES: biostudies-other
ACCESS DATA