Quantitative unique continuation for the heat equations with inverse square potential.
Ontology highlight
ABSTRACT: In this paper, we investigate the unique continuation properties for multi-dimensional heat equations with inverse square potential in a bounded convex domain ? of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{d}$\end{document}Rd. We establish observation estimates for solutions of equations. Our result shows that the value of the solutions can be determined uniquely by their value on an open subset ? of ? at any given positive time L.
SUBMITTER: Zheng G
PROVIDER: S-EPMC6244741 | biostudies-other | 2018
REPOSITORIES: biostudies-other
ACCESS DATA