Unknown

Dataset Information

0

Measuring nanoparticles in the size range to 2000 nm.


ABSTRACT: Measurement of light scattered from suspensions of monodisperse nanoparticles in solution ("turbidity") long has been used to derive their size. Following some means of fractionation, the light (monochromatic) scattered by the particles into a set of distinct angles is collected and a non-linear least squares fit was made to an appropriate theory in order to extract their size. For a wide range of particle structures, where this process becomes very complex and of questionable validity, there is a far simpler interpretive means based upon measurements at extremely small, and often inaccessible, scattering angles. A method is described whereby the required small angle values are derived from measurements made over a range of larger, more readily accessible, angles. Although the basis for the analyses developed is the Rayleigh-Gans approximation, the results presented confirm that the method provides meaningful results up to a size of about 2000 nm. The larger sizes are well beyond the RG limits.

SUBMITTER: Wyatt PJ 

PROVIDER: S-EPMC6290859 | biostudies-other | 2018

REPOSITORIES: biostudies-other

altmetric image

Publications

Measuring nanoparticles in the size range to 2000 nm.

Wyatt Philip J PJ  

Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 20181206 12


Measurement of light scattered from suspensions of monodisperse nanoparticles in solution ("turbidity") long has been used to derive their size. Following some means of fractionation, the light (monochromatic) scattered by the particles into a set of distinct angles is collected and a non-linear least squares fit was made to an appropriate theory in order to extract their size. For a wide range of particle structures, where this process becomes very complex and of questionable validity, there is  ...[more]

Similar Datasets

| S-EPMC9352036 | biostudies-literature
| S-EPMC9417850 | biostudies-literature
| S-EPMC5848075 | biostudies-literature
| S-EPMC11313250 | biostudies-literature
| S-EPMC5406831 | biostudies-other
| S-EPMC4385563 | biostudies-literature
| S-EPMC9692959 | biostudies-literature
| S-EPMC7881720 | biostudies-literature
| S-EPMC7299614 | biostudies-literature
| S-EPMC4677353 | biostudies-literature