Unknown

Dataset Information

0

High-throughput cancer hypothesis testing with an integrated PhysiCell-EMEWS workflow.


ABSTRACT: BACKGROUND:Cancer is a complex, multiscale dynamical system, with interactions between tumor cells and non-cancerous host systems. Therapies act on this combined cancer-host system, sometimes with unexpected results. Systematic investigation of mechanistic computational models can augment traditional laboratory and clinical studies, helping identify the factors driving a treatment's success or failure. However, given the uncertainties regarding the underlying biology, these multiscale computational models can take many potential forms, in addition to encompassing high-dimensional parameter spaces. Therefore, the exploration of these models is computationally challenging. We propose that integrating two existing technologies-one to aid the construction of multiscale agent-based models, the other developed to enhance model exploration and optimization-can provide a computational means for high-throughput hypothesis testing, and eventually, optimization. RESULTS:In this paper, we introduce a high throughput computing (HTC) framework that integrates a mechanistic 3-D multicellular simulator (PhysiCell) with an extreme-scale model exploration platform (EMEWS) to investigate high-dimensional parameter spaces. We show early results in applying PhysiCell-EMEWS to 3-D cancer immunotherapy and show insights on therapeutic failure. We describe a generalized PhysiCell-EMEWS workflow for high-throughput cancer hypothesis testing, where hundreds or thousands of mechanistic simulations are compared against data-driven error metrics to perform hypothesis optimization. CONCLUSIONS:While key notational and computational challenges remain, mechanistic agent-based models and high-throughput model exploration environments can be combined to systematically and rapidly explore key problems in cancer. These high-throughput computational experiments can improve our understanding of the underlying biology, drive future experiments, and ultimately inform clinical practice.

SUBMITTER: Ozik J 

PROVIDER: S-EPMC6302449 | biostudies-other | 2018 Dec

REPOSITORIES: biostudies-other

altmetric image

Publications

High-throughput cancer hypothesis testing with an integrated PhysiCell-EMEWS workflow.

Ozik Jonathan J   Collier Nicholson N   Wozniak Justin M JM   Macal Charles C   Cockrell Chase C   Friedman Samuel H SH   Ghaffarizadeh Ahmadreza A   Heiland Randy R   An Gary G   Macklin Paul P  

BMC bioinformatics 20181221 Suppl 18


<h4>Background</h4>Cancer is a complex, multiscale dynamical system, with interactions between tumor cells and non-cancerous host systems. Therapies act on this combined cancer-host system, sometimes with unexpected results. Systematic investigation of mechanistic computational models can augment traditional laboratory and clinical studies, helping identify the factors driving a treatment's success or failure. However, given the uncertainties regarding the underlying biology, these multiscale co  ...[more]

Similar Datasets

| S-EPMC4804120 | biostudies-literature
| S-EPMC5473464 | biostudies-literature
2020-09-28 | GSE119060 | GEO
| S-EPMC4522432 | biostudies-literature
| S-EPMC6954637 | biostudies-literature
| S-EPMC6750760 | biostudies-literature
| S-EPMC6375547 | biostudies-literature
| S-EPMC7333376 | biostudies-literature
2022-08-02 | GSE196373 | GEO
| S-EPMC6910252 | biostudies-literature