Unknown

Dataset Information

0

Facile Fabrication of Environmentally-Friendly Hydroxyl-Functionalized Multiwalled Carbon Nanotubes/Soy Oil-Based Polyurethane Nanocomposite Bioplastics with Enhanced Mechanical, Thermal, and Electrical Conductivity Properties.


ABSTRACT: It is challenging to prepare polyurethane bioplastics from renewable resources in a sustainable world. In this work, polyurethane nanocomposite bioplastics are fabricated by blending up to 80 wt % of soy-based polyol and petrochemical polyol with hydroxyl-functionalized multiwalled carbon nanotubes (MWCNTs-OH). The scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform infrared spectroscopy (FTIR) analyses reveal homogeneous dispersion of the MWCNTs-OH in the matrix, as well as interaction or reaction of MWCNTs-OH with the matrix or polymeric methylene diphenyl diisocyanate (pMDI) in forming the organic-inorganic hybrid bioplastic with a three-dimensional (3D) macromolecule network structure. Mechanical properties and electrical conductivity are remarkably enhanced with the increase of the multiwalled carbon nanotube (MWCNTs) loading. Dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) results show that the bioplastics with MWCNTs-OH have a better thermal stability compared with the bioplastics without MWCNTs-OH. The composition of the nanocomposites, which defines the characteristics of the material and its thermal and electrical conductivity properties, can be precisely controlled by simply varying the concentration of MWCNTs-OH in the polyol mixture solution.

SUBMITTER: Luo X 

PROVIDER: S-EPMC6572346 | biostudies-other | 2019 May

REPOSITORIES: biostudies-other

altmetric image

Publications

Facile Fabrication of Environmentally-Friendly Hydroxyl-Functionalized Multiwalled Carbon Nanotubes/Soy Oil-Based Polyurethane Nanocomposite Bioplastics with Enhanced Mechanical, Thermal, and Electrical Conductivity Properties.

Luo Xiaogang X   Yu Zengcheng Z   Cai Yixin Y   Wu Qiangxian Q   Zeng Jian J  

Polymers 20190501 5


It is challenging to prepare polyurethane bioplastics from renewable resources in a sustainable world. In this work, polyurethane nanocomposite bioplastics are fabricated by blending up to 80 wt % of soy-based polyol and petrochemical polyol with hydroxyl-functionalized multiwalled carbon nanotubes (MWCNTs-OH). The scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform infrared spectroscopy (FTIR) analyses reveal homogeneous dispersion of the MWCNTs-OH  ...[more]

Similar Datasets

| S-EPMC5727098 | biostudies-literature
| S-EPMC6862305 | biostudies-literature
| S-EPMC3478634 | biostudies-literature
| S-EPMC5453357 | biostudies-other
| S-EPMC4308723 | biostudies-literature
| S-EPMC7602050 | biostudies-literature