Unknown

Dataset Information

0

Enhancing the photovoltaic performance of hybrid heterojunction solar cells by passivation of silicon surface via a simple 1-min annealing process.


ABSTRACT: Solution-based heterojunction technology is emerging for facile fabrication of silicon (Si)-based solar cells. Surface passivation of Si substrate has been well established to improve the photovoltaic (PV) performance for the conventional bulk Si cells. However, the impact is still not seen for the heterojunction cells. Here, we developed a facile and repeatable method to passivate the Si surface by a simple 1-min annealing process in vacuum, and integrated it into the heterojunction cells with poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) or carbon nanotube (CNT). A thin and dense oxide layer was introduced on the Si surface to provide a high-quality hole transport layer and passivation layer. The layer enhanced the power conversion efficiency from 9.34% to 12.87% (1.38-times enhancement) for the PEDOT:PSS/n-Si cells and from 6.61% to 8.52% (1.29-times enhancement) for the CNT/n-Si cells. The simple passivation is a promising way to enhance the PV performance of the Si cells with various solution-based heterojunctions.

SUBMITTER: Xie R 

PROVIDER: S-EPMC6700085 | biostudies-other | 2019 Aug

REPOSITORIES: biostudies-other

altmetric image

Publications

Enhancing the photovoltaic performance of hybrid heterojunction solar cells by passivation of silicon surface via a simple 1-min annealing process.

Xie Rongbin R   Ishijima Naoya N   Sugime Hisashi H   Noda Suguru S  

Scientific reports 20190819 1


Solution-based heterojunction technology is emerging for facile fabrication of silicon (Si)-based solar cells. Surface passivation of Si substrate has been well established to improve the photovoltaic (PV) performance for the conventional bulk Si cells. However, the impact is still not seen for the heterojunction cells. Here, we developed a facile and repeatable method to passivate the Si surface by a simple 1-min annealing process in vacuum, and integrated it into the heterojunction cells with  ...[more]

Similar Datasets

| S-EPMC8473570 | biostudies-literature
| S-EPMC4668570 | biostudies-literature
| S-EPMC5449054 | biostudies-literature
| S-EPMC8225850 | biostudies-literature
| S-EPMC4423229 | biostudies-other
| S-EPMC6641530 | biostudies-literature
| S-EPMC6071099 | biostudies-literature
| S-EPMC6642036 | biostudies-literature
| S-EPMC6333271 | biostudies-literature
| S-EPMC6644478 | biostudies-literature