Unknown

Dataset Information

0

CHK1 Controls Zygote Pronuclear Envelope Breakdown by Regulating F-actin through Interacting with MICAL3


ABSTRACT: CHK1 mutations could cause human zygote arrest at pronuclei stage, a phenomenon that is not well understood at the molecular level. In this study, we conducted experiments where pre-pronuclei from zygotes with CHK1 mutation were transferred into the cytoplasm of normal enucleated fertilized eggs. This approach rescues the zygote arrest caused by the mutation, resulting in the production of a high-quality blastocyst. This suggests that CHK1 dysfunction primarily disrupts crucial biological processes occurring in the cytoplasm. Further investigation reveals that CHK1 mutants have an impact on the F-actin meshwork, leading to disturbances in pronuclear envelope breakdown. Through co-immunoprecipitation and mass spectrometry analysis of around 6000 mouse zygotes, we identified an interaction between CHK1 and MICAL3, a key regulator of F-actin disassembly. The gain-of-function mutants of CHK1 enhance their interaction with MICAL3 and increase MICAL3 enzymatic activity, resulting in excessive depolymerization of F-actin. These findings shed light on the regulatory mechanism behind pronuclear envelope breakdown during the transition from meiosis to the first mitosis in mammals.

SUBMITTER: Dr. Honghui Zhang 

PROVIDER: S-SCDT-10_1038-S44319-024-00267-7 | biostudies-other |

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC4555817 | biostudies-literature
| S-EPMC7857539 | biostudies-literature
| S-EPMC8351742 | biostudies-literature
| S-EPMC30959 | biostudies-literature
| S-EPMC4362455 | biostudies-literature
| S-EPMC5538770 | biostudies-literature
2024-07-31 | GSE267924 | GEO
| S-EPMC5985048 | biostudies-literature
| S-EPMC4639863 | biostudies-literature
| S-EPMC5800804 | biostudies-literature