Oxidized glutathione reverts carbapenem resistance in blaNDM-1-carrying Escherichia coli
Ontology highlight
ABSTRACT: The emergence of drug-resistant Enterobacteriaceae carrying plasmid-mediated β-lactamase genes has become a significant threat to public health. Organisms in the Enterobacteriaceae family containing New Delhi metallo-β-lactamase‑1 (NDM-1) and its variants, which are capable of hydrolyzing nearly all β-lactam antibacterial agents including carbapenems, are referred to as superbugs and distributed worldwide. Despite efforts over the past decade, the discovery of an NDM-1 inhibitor that can reach the clinic remains a challenge. Here, we identified oxidized glutathione (GSSG) as a metabolic biomarker for blaNDM-1 using a non-targeted metabolomics approach and demonstrated that GSSG supplementation could restore carbapenem susceptibility in Escherichia coli carrying blaNDM-1 in vitro and in vivo. We showed that exogenous GSSG promotes the bactericidal effects of carbapenems by interfering with intracellular redox homeostasis and inhibiting the expression of NDM-1 in drug-resistant E. coli. This study establishes a metabolomics-based strategy to potentiate metabolism-dependent antibiotic efficacy for the treatment of antibiotic-resistant bacteria.
SUBMITTER: Dong-Yang Ye
PROVIDER: S-SCDT-10_1038-S44321-024-00061-X | biostudies-other |
REPOSITORIES: biostudies-other
ACCESS DATA