Unknown

Dataset Information

0

FOXF1 Promotes Tumor Vessel Normalization and Prevents Lung Cancer Progression through FZD4


ABSTRACT: Cancer cells re-program normal lung endothelial cells (EC) into tumor-associated endothelial cells (TEC) that form leaky vessels supporting carcinogenesis. Transcriptional regulators that control reprogramming of EC into TEC are poorly understood. We identified Forkhead box F1 (FOXF1) as a critical regulator of EC-to-TEC transition. FOXF1 was highly expressed in normal lung vasculature but was decreased in TEC within non-small cell lung cancers (NSCLC). Low FOXF1 correlated with poor overall survival of NSCLC patients. In mice, endothelial-specific deletion of FOXF1 decreased pericyte coverage, increased vessel permeability and hypoxia, and promoted lung tumor growth and metastasis. Endothelial-specific over-expression of FOXF1 normalized tumor vessels and inhibited progression of lung cancer. FOXF1-deficiency decreased Wnt/β-catenin signaling in TECs through direct transcriptional activation of Fzd4. Restoring FZD4 expression in FOXF1-deficient TECs through endothelial-specific nanoparticle delivery of Fzd4 cDNA rescued Wnt/β-catenin signaling in TECs, normalized tumor vessels and inhibited progression of lung cancer. Altogether, FOXF1 increases tumor vessel stability, and inhibits lung cancer progression by stimulating FZD4/Wnt/β-catenin signaling in TECs. Nanoparticle delivery of FZD4 cDNA has promise for future therapies in NSCLC.

SUBMITTER: Fenghua Bian 

PROVIDER: S-SCDT-10_1038-S44321-024-00064-8 | biostudies-other |

REPOSITORIES: biostudies-other

Similar Datasets

2024-03-09 | GSE255969 | GEO
| PRJNA1077324 | ENA
| S-EPMC9297465 | biostudies-literature
| S-EPMC4191010 | biostudies-literature
| S-EPMC7727091 | biostudies-literature
| S-EPMC4534291 | biostudies-literature
| S-EPMC8100792 | biostudies-literature
| S-EPMC10177159 | biostudies-literature
| S-EPMC7242448 | biostudies-literature
| S-SCDT-10_15252-EMMM_202217014 | biostudies-other