Casein kinase 1 and 2 phosphorylate Argonaute proteins to regulate miRNA-mediated gene silencing
Ontology highlight
ABSTRACT: MicroRNAs (miRNAs) together with Argonaute (AGO) proteins form the core of the RNA-induced silencing complex (RISC) to regulate gene expression of their target RNAs post-transcriptionally. Argonaute proteins are subjected to intensive regulation via various post-translational modifications that can affect their stability, silencing efficacy and specificity for targeted gene regulation. We report here that in C. elegans, two conserved serine/threonine kinases - Casein Kinase 1 alpha 1 (CK1A1) and Casein Kinase 2 (CK2) - regulate a highly conserved phosphorylation cluster of 4 Serine residues (S988:S998) on the miRNA-specific AGO protein ALG-1. We show that CK1A1 phosphorylates ALG-1 at sites S992 and S995, while CK2 phosphorylates ALG-1 at sites S988 and S998. Furthermore, we demonstrate that phospho-mimicking mutants of the entire S988:S998 cluster rescue the various developmental defects observed upon depleting CK1A1 and CK2. In humans, we show that CK1A1 also acts as a priming kinase of this cluster on AGO2. Altogether, our data suggest that phosphorylation of AGO within the cluster by CK1A1 and CK2 is required for efficient miRISC-target RNA binding and silencing.
SUBMITTER: Vivek, Nilesh Shah
PROVIDER: S-SCDT-10_15252-EMBR_202357250 | biostudies-other |
REPOSITORIES: biostudies-other
ACCESS DATA