Project description:Novel spheroid-type tumor cell cultures directly isolated from patients' tumors preserve tumor characteristics better than traditionally grown cell lines. However, such cultures are not generally used for high-throughput toxicity drug screens. In addition, the assays that are commonly used to assess drug-induced toxicity in such screens usually measure a proxy for cell viability such as mitochondrial activity or ATP-content per culture well, rather than actual cell death. This generates considerable assay-dependent differences in the measured toxicity values. To address this problem we developed a robust method that documents drug-induced toxicity on a per-cell, rather than on a per-well basis. The method involves automated drug dispensing followed by paired image- and FACS-based analysis of cell death and cell cycle changes. We show that the two methods generate toxicity data in 96-well format which are highly concordant. By contrast, the concordance of these methods with frequently used well-based assays was generally poor. The reported method can be implemented on standard automated microscopes and provides a low-cost approach for accurate and reproducible high-throughput toxicity screens in spheroid type cell cultures. Furthermore, the high versatility of both the imaging and FACS platforms allows straightforward adaptation of the high-throughput experimental setup to include fluorescence-based measurement of additional cell biological parameters.
Project description:The majority of high-content imaging (HCI) assays have been performed on two-dimensional (2D) cell monolayers for its convenience and throughput. However, 2D-cultured cell models often do not represent the in vivo characteristics accurately and therefore reduce the predictability of drug toxicity/efficacy in vivo. Recently, three-dimensional (3D) cell-based HCI assays have been demonstrated to improve predictability, but its use is limited due to difficulty in maneuverability and low throughput in cell imaging. To alleviate these issues, we have developed miniaturized 3D cell culture on a micropillar/microwell chip and demonstrated high-throughput HCI assays for mechanistic toxicity. Briefly, Hep3B human hepatoma cell line was encapsulated in a mixture of alginate and fibrin gel on the micropillar chip, cultured in 3D, and exposed to six model compounds in the microwell chip for rapidly assessing mechanistic hepatotoxicity. Several toxicity parameters, including DNA damage, mitochondrial impairment, intracellular glutathione level, and cell membrane integrity were measured on the chip, and the IC50 values of the compounds at different readouts were determined to investigate the mechanism of toxicity. Overall, the Z' factors were between 0.6 and 0.8 for the HCI assays, and the coefficient of variation (CV) were below 20%. These results indicate high robustness and reproducibility of the HCI assays established on the miniaturized 3D cell culture chip. In addition, it was possible to determine the predominant mechanism of toxicity using the 3D HCI assays. Therefore, our miniaturized 3D cell culture coupled with HCI assays has great potential for high-throughput screening (HTS) of compounds and mechanistic toxicity profiling.
Project description:Drug-induced liver injury (DILI) is a major cause of drug failures in both the preclinical and clinical phase. Consequently, improving prediction of DILI at an early stage of drug discovery will reduce the potential failures in the subsequent drug development program. In this regard, high-content screening (HCS) assays are considered as a promising strategy for the study of DILI; however, the predictive performance of HCS assays is frequently insufficient. In the present study, a new testing strategy was developed to improve DILI prediction by employing in vitro assays that was combined with the RO2 model (i.e., 'rule-of-two' defined by daily dose ?100 mg/day & logP ?3). The RO2 model was derived from the observation that high daily doses and lipophilicity of an oral medication were associated with significant DILI risk in humans. In the developed testing strategy, the RO2 model was used for the rational selection of candidates for HCS assays, and only the negatives predicted by the RO2 model were further investigated by HCS. Subsequently, the effects of drug treatment on cell loss, nuclear size, DNA damage/fragmentation, apoptosis, lysosomal mass, mitochondrial membrane potential, and steatosis were studied in cultures of primary rat hepatocytes. Using a set of 70 drugs with clear evidence of clinically relevant DILI, the testing strategy improved the accuracies by 10 % and reduced the number of drugs requiring experimental assessment by approximately 20 %, as compared to the HCS assay alone. Moreover, the testing strategy was further validated by including published data (Cosgrove et al. in Toxicol Appl Pharmacol 237:317-330, 2009) on drug-cytokine-induced hepatotoxicity, which improved the accuracies by 7 %. Taken collectively, the proposed testing strategy can significantly improve the prediction of in vitro assays for detecting DILI liability in an early drug discovery phase.
Project description:Targeting infiltrating tumour cells is an attractive way of combating cancer invasion and metastasis. Here we describe a novel and reproducible method for high content analysis of invading cells using multicellular tumour spheroid assays in a high grade glioma model. Live cell imaging of spheroids generated from glioma cell lines, U87 and U251, gave insight into migration dynamics and cell morphology in response to anti-migratory drugs. Immunofluorescence imaging confirmed cytoskeletal rearrangements in the treated cells indicating a direct effect on cell morphology. Effect on migration was determined by a Migration Index (MI) from brightfield images which confirmed anti-migratory activity of the drugs. A marked effect on the core with treatment suggestive of disordered proliferation was also observed. A newly developed technique to prepare the spheroids and migratory cells for immunohistochemistry allowed an assessment of response to drug treatment with a selection of markers. A difference in protein expression was noted between cells maintained within the core and migratory cells indicative of the presence of cell subpopulations within the spheroid core. We conclude that this high content analysis allows researchers to perform screening of anti-tumour invasion compounds and study their effects on cellular dynamics, particularly in relation to protein expression, for the first time.
Project description:Development of predictive in vitro assays for early toxicity evaluation is extremely important for improving the drug development process and reducing drug attrition rates during clinical development. High-content imaging-based in vitro toxicity assays are emerging as efficient tools for safety and efficacy testing to improve drug development efficiency. In this report we have used an induced pluripotent stem cell (iPSC)-derived hepatocyte cell model having a primary tissue-like phenotype, unlimited availability, and the potential to compare cells from different individuals. We examined a number of assays and phenotypic markers and developed automated screening methods for assessing multiparameter readouts of general and mechanism-specific hepatotoxicity. Endpoints assessed were cell viability, nuclear shape, average and integrated cell area, mitochondrial membrane potential, phospholipid accumulation, cytoskeleton integrity, and apoptosis. We assayed compounds with known mechanisms of toxicity and also evaluated a diverse hepatotoxicity library of 240 compounds. We conclude that high-content automated screening assays using iPSC-derived hepatocytes are feasible, provide information about mechanisms of toxicity, and can facilitate the safety assessment of drugs and chemicals.
Project description:Nitroreductase enzymes are responsible for the reduction of nitro functional groups to amino functional groups, and are found in a range of animal models, zebrafish (Danio rerio) excluded. Transgenic zebrafish models have been developed for tissue-specific cell ablation, which use nitroreductase to ablate specific tissues or cell types following exposure to the non-toxic pro-drug metronidazole (MTZ). When metabolized by nitroreductase, MTZ produces a potent cytotoxin, which specifically ablates the tissue in which metabolism occurs. Uses, beyond tissue-specific cell ablation, are possible for the hepatocyte-specific Tg(l-fabp:CFP-NTR)s891 zebrafish line, including investigations of the role of nitroreductase in the toxicity of nitrated compounds. The hepatic ablation characteristics of this transgenic line were explored, in order to expand its potential uses. Embryos were exposed at 48, 72, or 96 hours post fertilization (hpf) to a range of MTZ concentrations, and the ablation profiles were compared. Ablation occurred at a 10-fold lower concentration than previously reported. Embryos were exposed to a selection of other compounds, with and without MTZ, in order to investigate alternative uses for this transgenic line. Test compounds were selected based on: their ability to undergo nitroreduction, known importance of hepatic metabolism to toxicity, and known pharmaceutical hepatotoxins. Selected compounds included nitrated polycyclic aromatic hydrocarbons (nitro-PAHs), the PAHs retene and benzo[a]pyrene, and the pharmaceuticals acetaminophen and flutamide. The results suggest a range of potential roles of the liver in the toxicity of these compounds, and highlight the additional uses of this transgenic model in toxicity testing.
Project description:Reactivation of genes normally expressed during organogenesis is a characteristic of kidney regeneration. Enhancing this reactivation could potentially be a therapeutic target to augment kidney regeneration. The inductive events that drive kidney organogenesis in zebrafish are similar to the initial steps in mammalian kidney organogenesis. Therefore, quantifying embryonic signals that drive zebrafish kidney development is an attractive strategy for the discovery of potential novel therapeutic modalities that accelerate kidney regeneration. The Lim1 homeobox protein, Lhx1, is a marker of kidney development that is also expressed in the regenerating kidneys after injury. Using a fluorescent Lhx1a-EGFP transgene whose phenotype faithfully recapitulates that of the endogenous protein, we developed a high-content assay for Lhx1a-EGFP expression in transgenic zebrafish embryos employing an artificial intelligence-based image analysis method termed cognition network technology (CNT). Implementation of the CNT assay on high-content readers enabled automated real-time in vivo time-course, dose-response, and variability studies in the developing embryo. The Lhx1a assay was complemented with a kidney-specific secondary CNT assay that enables direct measurements of the embryonic renal tubule cell population. The integration of fluorescent transgenic zebrafish embryos with automated imaging and artificial intelligence-based image analysis provides an in vivo analysis system for structure-activity relationship studies and de novo discovery of novel agents that augment innate regenerative processes.