Project description:To understand if the generation of xenograft and organoid models of breast cancer alters DNA methylation, we compared the genome-wide methylation profile of matching patient tumors, patient derived xenografts, and organoid cultures derived from xenografts.
Project description:Patient-derived xenografts (PDX) and organoids (PDO) have been shown to model clinical response to cancer therapy. However, it remains challenging to use these models to guide timely clinical decisions for cancer patients. Here we used droplet emulsion microfluidics with temperature control and dead-volume minimization to rapidly generate thousands of Micro- Organospheres (MOS) from low-volume patient tissues, which serve as an ideal patient-derived model for clinical precision oncology. A clinical study of newly diagnosed metastatic colorectal cancer (CRC) patients using a MOS-based precision oncology pipeline reliably predicted patient treatment outcome within 14 days, a timeline suitable for guiding treatment decisions in clinic. Furthermore, MOS capture original stromal cells and allow T cell penetration, providing a clinical assay for testing immuno-oncology (IO) therapies such as PD-1 blockade, bispecific antibodies, and T cell therapies on patient tumors.
Project description:A set of 17 prostate cancer patient-derived xenografts (PDX, Lin et al 2014, Cancer research) was analyzed by mass spectrometry-based proteomics to characterize the effects of castration in vivo, and the proteome differences between NEPC and prostate adenocarcinomas.
Project description:Purpose: While molecular targeted therapy has revolutionized the treatment of many cancers, little progress has been made in the development of novel therapies for muscle invasive bladder cancer (MIBC). Here we report on the establishment and characterization of patient-derived primary MIBC xenografts