ABSTRACT: This is a randomized clinical trial to evaluate the use of mobile devices in preventing readmission in patients undergoing major GI cancer operations.
DISEASE(S): Colon Cancer,Hepatic Cancer,Gastric Cancer,Pancreatic Cancer,Rectal Cancer,Liver Neoplasms,Small Bowel Cancer
Project description:The exchange of mobile genomic islands (MGIs) between microorganisms is often mediated by phages. As a consequence, not only phage genes are transferred, but also genes that have no particular function in the phage's lysogenic cycle. If they provide benefits to the phage's host, such genes are referred to as ‘morons’. The present study was aimed at characterizing a set of Enterobacter cloacae, Klebsiella pneumoniae and Escherichia coli isolates with exceptional antibiotic resistance phenotypes from patients in a neonatal ward. Unexpectedly, these analyses unveiled the existence of a novel family of closely related MGIs in Enterobacteriaceae. The respective MGI from E. cloacae was named MIR17-GI. Importantly, our observations show that MIR17-GI-like MGIs harbor genes associated with high-level resistance to cephalosporins. Further, we show that MIR17-GI-like islands are associated with integrated P4-like prophages. This implicates phages in the spread of cephalosporin resistance amongst Enterobacteriaceae. The discovery of a novel family of MGIs spreading ‘cephalosporinase morons’ is of high clinical relevance, because high-level cephalosporin resistance has serious implications for the treatment of patients with Enterobacteriaceal infections.
Project description:Small RNAs recently emerged as a new class of mobile instructive signals in development. Here, we investigate their mechanism of action and show that the gradients formed by mobile small RNAs generate sharply defined domains of target gene expression. By modulating the source of artificial miRNAs we show that boundary formation is an inherent property of the small RNA gradient itself. The threshold-based readout of such gradients is highly sensitive to small RNA levels at the source, allowing plasticity in the positioning of a target gene expression boundary. In addition to generating sharp expression domains of their immediate targets, the readouts of opposing small RNA gradients enable formation of stable and uniformly positioned developmental boundaries. These novel patterning properties of small RNAs are reminiscent of those of morphogens in animal systems. However, their exceptionally high specificity, direct mode of action, and the fully intrinsic nature of their gradients, distinguish mobile small RNAs from classical morphogens. Our findings present mobile small RNAs and their targets as highly portable and evolutionarily-tractable regulatory modules through which to create pattern in development and beyond.
Project description:The Mobile CRISPRi system with and without mRFP-targeting sgRNA was engineered into Pseudomonas aeruginosa PA14 strain with chromosomally encoded mRFP. RNA was isolated from these strains, and the corresponding cDNA library was synthesized and sequenced in 150 bp paired-end reads. Approximately 1,000,000 reads were collected for each of the two samples, with ~94% alignment to PA14 WT by Bowtie254, and transcripts were counted with HTSeq55. Only genes with a non-normalized read count greater than 1 in both samples were included in analysis, with a coverage of 1286 genes (~20% genome). This data shows that the Mobile CRISPRi system is selective for sgRNA-guided knockdown of mRFP.
Project description:The widespread use of wireless devices during the last decades is rising the concern about the adverse health effects of the radiofrequency electromagnetic radiation (RF-EMR) emitted from these devices. Studies are targeting on unrevealing the underlying mechanisms of RF-EMR action. The contribution of the “omics” high throughput approaches is a prerequisite towards this direction. In the present work, C57BL/6 adult male mice were sham-exposed (nSE=8) or whole-body exposed (nExp=8) for 2h to GSM 1800 MHz mobile phone radiation at 11 V/m average electric field intensity, and the RF-EMR effects on the hippocampal lipidome and transcriptome profile were evaluated. The data analysis of the phospholipids’ fatty acid residues revealed that the levels of six fatty acids (16:0, 16:1 6+7c, 18:1 9c, 20:5 w3, SFA, MUFA) were significantly altered (p<0.05) in the exposed group. The microarray data analysis demonstrated that the expression of 178 genes changed significantly (p<0.05) between the two groups with a fold change cut off of 1.5. In general, the observed changes point out the attention to a membrane remodeling response of the tissue phospholipids after non-ionizing radiation exposure, reducing the Saturated Fatty Acids (SFA) and EPA omega-3 (20:5 w3) and increasing Monounsaturated Fatty Acids (MUFA) residues and in parallel reflect an impact to genes implicated in critical biological processes, as cell cycle, DNA replication and repair, cell death, cell signaling, nervous system development and function, immune system response, lipid metabolism and cancer