Lynch Syndrome Can be Diagnosed Just From Somatic Mismatch Repair Mutation
Ontology highlight
ABSTRACT: The objective of the study is the provide proof of high correlation between somatic and germline mismatch repair instability. This correlation is specifically researched in an area where patients have less access to cancer education and genetic testing for various reasons such as lack of insurance and general accessibility.
The study concentrates on early diagnosis of Lynch syndrome. Lynch syndrome is usually diagnosed from a blood test resulting in a mutation of one of the mismatch repair genes. Those are MLH1, MSH2, MSH 6, PMS2. A mutation in one of these genes creates a mismatch repair instability,hence higher incidence of cancers in specific organ groups. Amongst these organs are the Uterus, Ovaries, Upper genitourinary system, Pancreas and GI system.
The most common endometrial carcinoma which is found in Lynch syndrome is of endometrioid histology. Most patients with known germline mismatch repair instability, have the same somatic mutation. Our study is looking into correlating somatic mutation to germline mutation.
By doing so, patients diagnosed with somatic mismatch repair instability will be also diagnosed with lynch syndrome without germline genetic testing.
Screening programs will be utilized earlier and preventive procedures offered.
Due to less access to educational programs, genetic counseling and testing in underserved areas, patients are sometimes lost to follow up. Our study seeks to prove high correlation between somatic and germline mutations and by doing so, patient will be diagnosed with Lynch syndrome straight after endometrial cancer staging. As a result, increased compliance will be expected and patients will be offered the recommended preventative surgeries and screening protocols.
DISEASE(S): Endometrial Cancer,Lynch Syndrome,Cancer Gene Mutation,Endometrial Neoplasms,Colorectal Neoplasms, Hereditary Nonpolyposis,Somatic Mutation
PROVIDER: 2349042 | ecrin-mdr-crc |
REPOSITORIES: ECRIN MDR
ACCESS DATA