Project description:Many human characteristics, including susceptibility to disease, are determined genetically. An unexplored alternative to such genetic determination concerns epigenetic mechanisms such as DNA methylation. CpG islands (CGIs) are generally constitutively hypomethylated, however there are circumstances in which they become heavily methylated and, when coincident with a gene promoter, this invariably causes transcriptional silencing. CGI methylation occurs in normal tissues during processes such as X-inactivation, but abnormal patterns of methylation have also been implicated in disease. The vast majority of evidence relates to cancer, where silencing of multiple genes in this way appears to be a causal contributor to the cancer state. To address the role and extent of CGI methylation in ‘normal’ and diseased cells we applied MBD-affinity purification in conjunction with next generation sequencing in a panel of human brain autopsy samples. These samples represent a panel of individuals as well as specific brain regions and neurological pathologies.
Project description:Many human characteristics, including susceptibility to disease, are determined genetically. An unexplored alternative to such genetic determination concerns epigenetic mechanisms such as DNA methylation. CpG islands (CGIs) are generally constitutively hypomethylated, however there are circumstances in which they become heavily methylated and, when coincident with a gene promoter, this invariably causes transcriptional silencing. CGI methylation occurs in normal tissues during processes such as X-inactivation, but abnormal patterns of methylation have also been implicated in disease. The vast majority of evidence relates to cancer, where silencing of multiple genes in this way appears to be a causal contributor to the cancer state. To address the role and extent of CGI methylation in ‘normal’ and diseased cells we applied MBD-affinity purification in conjunction with next generation sequencing in a panel of human brain autopsy samples. These samples represent a panel of individuals as well as specific brain regions and neurological pathologies.
Project description:The genome-wide variation of multiple epigenetic modifications in CpG islands (CGIs) and the interactions between them are of great interest. Here, we optimized an entropy-based strategy to quantify variation of epigenetic modifications and explored their interaction across mouse embryonic stem cells, neural precursor cells and brain. Our results showed that four epigenetic modifications (DNA methylation, H3K4me2, H3K4me3 and H3K27me3) of CGIs in the mouse genome undergo combinatorial variation during neuron differentiation. DNA methylation variation was positively correlated with H3K27me3 variation, and negatively correlated with H3K4me2/3 variation. We identified 5,194 CGIs differentially modified by epigenetic modifications (DEM-CGIs). Among them, the differentially DNA methylated CGIs overlapped significantly with the CGIs differentially modified by H3K27me3. Moreover, DEM-CGIs may contribute to co-regulation of related developmental genes including core transcription factors. Our entropy-based strategy provides an effective way of investigating dynamic cross-talk among epigenetic modifications in various biological processes at the macro scale.
Project description:Reversal of gene promoter DNA hypermethylation and associated abnormal gene silencing is an attractive approach to cancer therapy. The DNA methylation inhibitor, decitabine (5-aza-2'-deoxycitidine), is proving efficacious for hematological neoplasms especially at lower, less toxic, doses. Experimentally, high doses induce rapid DNA damage and cytotoxicity, but these may not explain the prolonged time to response seen in patients. Transient exposure of leukemic and solid tumor cells to clinically-relevant nanomolar doses, without causing immediate cytotoxicity or apoptosis, produces sustained reduced tumorigenicity, and for leukemia cells, diminished long-term self-renewal. These effects appear triggered by cellular reprogramming and include sustained decreases in promoter DNA methylation with associated gene re-expression, and anti-tumor changes in multiple key cellular regulatory pathways, most of which are high priority targets for pharmacologic anti-cancer strategies. Thus, low dose decitabine regimens appear to have broad applicability for cancer management. [Gene expression profiling] Leukemia cell lines Kasumi-1 and KG1A are treated with 10nM DAC during 72 hours and gene expression was assayed at day 3, 7 and 14 after the start of the treatment. Appropriate mock treated samples were used as control in each case. In addition, Kasumi-1 cells were also treated with a higher dose of DAC (500nM), 100nM ARA-C and 300 nM TSA, again controlled against mock treated Kasumi-1 cells, to separate dose and agent dependent effects. MCF7 was studied as an example of a solid tumor cell line. Therefore MCF7 cells were treated with 100nM DAC and results were assayed at day 1, day 3 and day 10. [Methylation profiling] The effects of the demethylating agent DAC were studied in the leukemia cell line Kasumi-1 over a 28 day time course. Intermediate time points were studied at days 3, 7, 14 and 21. These results were verfied in KG1A and KG1 leukemia cell lines, at one selected time point. The effects on one primary sample were also studied. Four normal leukemia samples (PL1, 2, 4 and 5) were used as general controls. The effect of DAC was compared to ARA-C, TSA. Both mock treated and day 3 DAC treated Kasumi-1 cells were repeated. These results were verified at one selected time point for the DAC treated MCF7 breast cancer cell line.
Project description:We found frequent epigenetic silencing of microRNA-34b/c in human colorectal cancer. Introduction of miR-34b/c into a colorectal cancer cell line induced significant changes in gene expression profile. We also found overlap between the genes downregulated by miR-34b/c and those downregulated by DAC. Keywords: dose response A colorecal cancer cell line HCT116 was transfected with miR-34b or -c precursor or negative control. Also, HCT116 was treated with 5-aza-2'-deoxycytidine (DAC) or mock. Genes up- or downregulated by miR-34b/c and those by DAC was compared.
Project description:To identify genes responsible for the synergistic effect of DAC with Dex, we performed cDNA microarray analyses using cDNA prepared from Dex-resistant OPM1 cells treated with/without Dex, DAC or DAC+Dex.
Project description:Aberrant expression of microRNA (miRNA) has been reported in various cancers. To clarify the role of miRNA in gastric carcinogenesis, we performed miRNA microarray analysis and investigated expressional changes of miRNAs in a 5-aza-2'-deoxycytidine (DAC)-treated gastric cancer cell line, KATO-ІІІ.