Project description:This dataset is composed of sequencing data from 16 patients diagnosed with follicular lymphoma, who developed transformed disease and for whom representative frozen tumor biopsy samples were available. For 14 patients there is paired material from both disease stages. DNA and RNA libraries were constructed and captured with a kinome bait library (Agilent Technologies), before sequencing on an Illumina platform.
Project description:Our study had shown that DAC treatment enhanced immunogenecity of EL4 cells. To explore the mechanisms of DAC-induced tumor immunity, we carried out cDNA microarray analyses to compare the differential expression of genes between DAC and PBS treated EL4 cells.
Project description:Our study had shown that DAC treatment enhanced immunogenecity of EL4 cells. To explore the mechanisms of DAC-induced tumor immunity, we carried out cDNA microarray analyses to compare the differential expression of genes between DAC and PBS treated EL4 cells. Two-condition experiment, PBS treated EL4 vs. Decitabine treated EL4 cells. Biological replicates: 3 PBS treated, 3 Decitabine treated, independently treatment and harvested. One replicate per array.
Project description:Follicular lymphoma (FL) is the most common indolent type of B-cell non-Hodgkin lymphoma. Advances in treatment have improved overall survival, but early relapse or transformation to aggressive disease is associated with inferior outcome. To identify early genetic events and track tumor clonal evolution, we performed multi-omics analysis of 94 longitudinal biopsies from 44 FL patients; 22 with transformation (tFL) and 22 with relapse without transformation (nFL). Deep whole-exome sequencing confirmed recurrent mutations in genes encoding epigenetic regulators (CREBBP, KMT2D, EZH2, EP300), with similar mutational landscape in nFL and tFL patients. Calculation of genomic distances between longitudinal samples revealed complex evolutionary patterns in both subgroups. CREBBP and KMT2D mutations were identified as genetic events that occur early in the disease course, and cases with CREBBP KAT domain mutations had low risk of transformation. Gains in chromosomes 12 and 18 (TCF4), and loss in 6q were identified as early and stable copy number alterations. Identification of such early and stable genetic events may provide opportunities for early disease detection and disease monitoring. Integrative analysis revealed that tumors with EZH2 mutations exhibited reduced gene expression of numerous histone genes, including histone linker genes. This might contribute to the epigenetic dysregulation in FL.
Project description:Reversal of gene promoter DNA hypermethylation and associated abnormal gene silencing is an attractive approach to cancer therapy. The DNA methylation inhibitor, decitabine (5-aza-2'-deoxycitidine), is proving efficacious for hematological neoplasms especially at lower, less toxic, doses. Experimentally, high doses induce rapid DNA damage and cytotoxicity, but these may not explain the prolonged time to response seen in patients. Transient exposure of leukemic and solid tumor cells to clinically-relevant nanomolar doses, without causing immediate cytotoxicity or apoptosis, produces sustained reduced tumorigenicity, and for leukemia cells, diminished long-term self-renewal. These effects appear triggered by cellular reprogramming and include sustained decreases in promoter DNA methylation with associated gene re-expression, and anti-tumor changes in multiple key cellular regulatory pathways, most of which are high priority targets for pharmacologic anti-cancer strategies. Thus, low dose decitabine regimens appear to have broad applicability for cancer management. [Gene expression profiling] Leukemia cell lines Kasumi-1 and KG1A are treated with 10nM DAC during 72 hours and gene expression was assayed at day 3, 7 and 14 after the start of the treatment. Appropriate mock treated samples were used as control in each case. In addition, Kasumi-1 cells were also treated with a higher dose of DAC (500nM), 100nM ARA-C and 300 nM TSA, again controlled against mock treated Kasumi-1 cells, to separate dose and agent dependent effects. MCF7 was studied as an example of a solid tumor cell line. Therefore MCF7 cells were treated with 100nM DAC and results were assayed at day 1, day 3 and day 10. [Methylation profiling] The effects of the demethylating agent DAC were studied in the leukemia cell line Kasumi-1 over a 28 day time course. Intermediate time points were studied at days 3, 7, 14 and 21. These results were verfied in KG1A and KG1 leukemia cell lines, at one selected time point. The effects on one primary sample were also studied. Four normal leukemia samples (PL1, 2, 4 and 5) were used as general controls. The effect of DAC was compared to ARA-C, TSA. Both mock treated and day 3 DAC treated Kasumi-1 cells were repeated. These results were verified at one selected time point for the DAC treated MCF7 breast cancer cell line.
Project description:We found frequent epigenetic silencing of microRNA-34b/c in human colorectal cancer. Introduction of miR-34b/c into a colorectal cancer cell line induced significant changes in gene expression profile. We also found overlap between the genes downregulated by miR-34b/c and those downregulated by DAC. Keywords: dose response A colorecal cancer cell line HCT116 was transfected with miR-34b or -c precursor or negative control. Also, HCT116 was treated with 5-aza-2'-deoxycytidine (DAC) or mock. Genes up- or downregulated by miR-34b/c and those by DAC was compared.
Project description:To identify genes responsible for the synergistic effect of DAC with Dex, we performed cDNA microarray analyses using cDNA prepared from Dex-resistant OPM1 cells treated with/without Dex, DAC or DAC+Dex.
Project description:Most flowering plants must defend themselves against herbivores for survival and attract pollinators for reproduction. Although traits involved in plant defence and pollinator attraction are often localised in leaves and flowers, respectively, they will show a diffuse evolution if they share the same molecular machinery and regulatory networks. We performed RNA-sequencing to characterise and compare transcriptomic changes involved in herbivory-induced defences and flower development, in tomato leaves and flowers, respectively. We found that both the herbivory-induced responses and flower development involved alterations in jasmonic acid signalling, suppression of primary metabolism and reprogramming of secondary metabolism. We identified 411 genes that were involved in both processes, a number significantly higher than expected by chance. Genetic manipulation of key regulators of induced defences also led to the expression changes in the same genes in both leaves and flowers. Targeted metabolomic analysis showed that among closely related tomato species, jasmonic acid and α-tomatine are correlated in flower buds and herbivory-induced leaves. These findings suggest that herbivory-induced responses and flower development share a common molecular machinery and likely have coevolved in nature.