Project description:The Genetic Association Information Network (GAIN) Data Access Committee was established in June 2007 to provide prompt and fair access to data from six genome-wide association studies through the database of Genotypes and Phenotypes (dbGaP). Of 945 project requests received through 2011, 749 (79%) have been approved; median receipt-to-approval time decreased from 14 days in 2007 to 8 days in 2011. Over half (54%) of the proposed research uses were for GAIN-specific phenotypes; other uses were for method development (26%) and adding controls to other studies (17%). Eight data-management incidents, defined as compromises of any of the data-use conditions, occurred among nine approved users; most were procedural violations, and none violated participant confidentiality. Over 5 years of experience with GAIN data access has demonstrated substantial use of GAIN data by investigators from academic, nonprofit, and for-profit institutions with relatively few and contained policy violations. The availability of GAIN data has allowed for advances in both the understanding of the genetic underpinnings of mental-health disorders, diabetes, and psoriasis and the development and refinement of statistical methods for identifying genetic and environmental factors related to complex common diseases.
Project description:Studying the physiology and pathology of gastrointestinal (GI) tissues requires tools that can accurately mimic their complex architecture and functionality in vitro. Organoids have emerged as one such promising tool, though their closed structures with poorly accessible lumen and limited observability makes readouts challenging. In this study, we introduce a bioengineered organoid platform that generates bilaterally accessible 3D tissue models, allowing independent manipulation of both the apical and basal sides of patterned epithelial monolayers. We successfully constructed gastric, small intestinal, caecal, and colonic epithelial models that faithfully reproduced tissue-respective geometries and exhibited high physiological relevance, evidenced by the regionalization of stem cells and transcriptional resemblance to real epithelia. The gained observability allowed single-cell tracking over time and studies into the motility of cells in immersion and air-liquid interface cultures. Additionally, this model recapitulated Trichuris muris infection of the caecum epithelium, allowing the first live imaging of syncytial tunnel formation. Overall, this platform offers accessible organoids with improved observability, making it a valuable tool for investigating the dynamics of GI epithelial cells and their interactions with pathogens.
Project description:Next-generation sequencing enables faster, cheaper and more accurate whole-genome sequencing, allowing genome profiling and discovery of molecular features. As molecular targeted drugs are developed, treatment can be tailored according to molecular subtype. Gastric and colorectal cancers have each been divided into four subtypes according to molecular features. Profiling of the esophageal cancer genome is underway and its classification is anticipated. To date, identification of HER2 expression in gastric adenocarcinoma and KRAS, NRAS and BRAF mutations in colon cancer have proved essential for treatment decisions. However, to overcome therapy resistance and improve prognosis, further individualized therapy is required. Here, we summarize the treatment options for gastrointestinal cancer according to genomic profiling and discuss future directions.