Project description:Objectives: Despite recent advancements in diagnostic tools, the genomic landscape of hereditary hearing loss remains largely uncharacterized. One strategy to understand genome-wide aberrations includes the analysis of copy number variation that can be mapped using SNP-microarray technology. A growing collection of literature has begun to uncover the importance of copy number variation in hereditary hearing loss. This pilot study underpins a larger effort that involves the stage-wise analysis of hearing loss patients, many of whom have advanced to high-throughput sequencing analysis. Data description: Our data originate from Infinium HumanOmni1-Quad v1.0 SNP-microarrays (Illumina) that provide useful markers for genome-wide association studies and copy number variation analysis. This dataset comprises a cohort of 108 individuals (99 with hearing loss, 9 normal hearing family members) for the purpose of understanding the genetic contribution of copy number variations to hereditary hearing loss.
Project description:Age-related hearing loss is a multifactorial and progressive process, which negatively impacts quality of life in many senior adults as the number one chronic neurodegenerative condition. This study was done to examine gene expression changes occurring in mouse auditory nerve and cochlear lateral wall tissues that may contribute to age-related hearing loss. In addition to conducting general differential expression analysis, a focused analysis of genes linked to neural cells was done.
Project description:Presbycusis – age-related hearing loss – is the number one communicative disorder of our aged population. Here we analyzed gene expression for a set of GABA receptors in the cochlea of aging CBA mice using the Affymetrix GeneChip MOE430A. Functional phenotypic hearing measures distortion-product otoacoustic emission (DPOAE) amplitudes (four age groups) were made. The gene expression changes from RMA normalized microarray data (40 replicates) were first subjected to one-way ANOVA, and then linear regression was performed. In addition, the log signal ratio was converted to fold change, and selected gene expression changes were confirmed by relative real-time PCR. Major findings: expression of GABA-A receptor subunit 6was upregulated with age and hearing loss, whereas subunit 1 was repressed. In addition, GABA-A receptor associated protein like-1 and GABA-A receptor associated protein like-2 were strongly downregulated with age and hearing impairment. Lastly, gene expression measures were correlated with pathway/network relationships relevant to the inner ear using Pathway Architect, to identify key pathways consistent with the gene expression changes observed. In the study of expression changes GABA receptors in the in cochlea of young adult and aging presbycusis mice total of forty chips were used. The normal aging mice were in four groups young adults controls with good hearing (8 mice, 8 MOE430A GeneChips), Middle aged group with good hearing ( 17 mice, 17 MOE430A GeneChips), Mild Presbycusis (old) with limited hearing loss (9 mice, 9 MOE430A GeneChips) and Severe Presbycusis (old) (6 mice, 6 MOE430A GeneChips). Each Mice cochlea to each GeneChips, Samples was not pooled. The hearing potential evidence of each mouse is accompanied with each mice DPOAE amplitude.
Project description:We performed a microarray analysis of auditory midbrain (inferior colliculus, IC) mRNA from young adult CBA mice (controls) with good hearing, middle aged (MA) with good hearing, and old mild (MP) and severe (SP) presbycusic CBA mice. Fold Change data derived from RMA normalization revealed that the overall GABA receptor alpha 6 expression profiles for MA, MP and SP were down-regulated relative to young adult controls with good hearing. Relative real-time PCR for five GABA receptors confirmed this age-related down regulation quantitatively. Functional hearing data: Auditory Brainstem Responses (ABR) enriched the analysis to select the probe-sets that changed with age and hearing loss by the linear regression best-fit line model technique. GABA receptor genotype-phenotype correlations with auditory functional data indicated that GABA-receptor subtypes are under expressed in SP mice. Hierarchical clustering (HC) analyses yielded statistical significance of normalized GeneChip data Real-time PCR showed that Gabra6, GABA B receptor 1 (Gabbr1), and Gaba transporter protein Slc32a1 may be involved in physiological changes that occur in age-related hearing loss. Presbycusis – age-related hearing loss – is the number one communicative disorder of our aged population. In this study we analyzed gene expression for a set of GABA receptors in the inferior colliculus of aging CBA mice using the Affymetrix GeneChip MOE430A. Functional phenotypic hearing changes from RMA normalized microarray data (39 replicates) in four age-groups, Young Controls and Middle aged mice with good hearing, mild and sever e presbycusis from old mice. Fold change gene expression derived from RMA normalized data were first subjected to one-way ANOVA, and then linear regression was performed. The selected gene expression changes were confirmed by relative real-time relative to young adult controls with good hearing. Statistically significant and real time PCR confirmed GABA receptor genes; Gabra6, GABA B receptor 1 (Gabbr1), and Gaba transporter protein Slc32a1, may be involved in physiological changes that occur in age-related hearing loss. Lastly, gene expression measures of each age group were correlated with pathway/network relationships relevant to the inferior colliculus using Pathway Architect, to identify key pathways consistent with the gene expression changes observed In the study of Expression changes in IC GABA receptors in the Auditory Midbrain of young adult and aging presbycusis mice total of thirty nine chips were used. The normal aging mice were in Four groups Young adults Controls with good hearing (8 mice, 8 MOE430A GeneChips), Middle aged group with good hearing ( 17 mice, 17 MOE430A GeneChips), Mild Presbycusis with limited hearing loss (9 mice, 9 MOE430A GeneChips) and Severe Presbycusis (5 mice, 5 MOE430A GeneChips).
Project description:A large number of congenital hearing loss cases have an unknown genetic etiology. So far, transcriptomic approaches have successfully identified many candidate regulators of otic development, little is known about the abundance of their protein products during the development of the inner eat. Herein we used a multiplexed quantitative mass spectrometry-based proteomic approach to determine temporal trends in protein abundances during inner ear (otic) development in Xenopus. Wild type Xenopus embryos were cultured to larval stages and their otic tissues were manually dissected at five stages that represent that represent key transitions in otic morphology. The samples were processed using a bottom-up proteomic workflow and analyzed using LC-MS3.The analysis revealed dynamic expression of proteins related to cytoskeletal regulation, integrin signaling, and the extracellular matrix as inner ear structures developed. We correlated the dynamically regulated proteins in our dataset with previously published putative downstream targets of syndromic hearing loss genes SIX1 and CHD7 to identify novel candidate genes for congenital hearing loss.
Project description:This study investigates how lead exposure triggers cochlear synaptopathy and hearing loss in mice. Young-adult CBA/J mice were given lead acetate in drinking water for 28 days. We assessed hearing thresholds, outer hair cell activity, and synaptic changes in the cochlea. Lead exposure raises hearing thresholds, indicating cochlear synaptopathy. Notably affects synapses in the basal turn without impacting outer hair cells. In addition to this, lead altered the abundance of 352 synaptic proteins, with the synaptic vesicle cycle pathway prominently affected. Lead-induced cochlear synaptopathy targets basal cochlear regions, implicating synaptic vesicle cycle signaling in hearing loss. Revealing specific mechanisms behind lead-induced hearing deficits enhances targeted interventions and preventive strategies, advancing our understanding of lead induced hearing loss.