Ena-DATASET-DKFZ-IBIOS-16-07-2015-15:45:02:488-51 - samples
Ontology highlight
ABSTRACT: Despite the established role of the transcription factor MYC in cancer, little is known about the impact of a new class of transcriptional regulators, the long non-coding RNAs (lncRNAs), on the way MYC is able to influence cellular transcriptome. To this aim we have intersected RNA-sequencing data from two MYC-inducible cell lines and from a cohort of 91 mature B-cell lymphomas carrying, or not carrying, genetic variants resulting in MYC over-expression. By this approach, we identified 13 lncRNAs differentially expressed in IG-MYC-positive Burkitt lymphoma and regulated in the same direction by MYC in the model cell lines. Among them we focused on a lncRNA that we named MINCR, for MYC-Induced long Non-Coding RNA, showing a strong correlation with MYC expression in MYC-positive lymphomas and also in pancreatic ductal adenocarcinomas. To understand its cellular role we performed RNA interference (RNAi) experiments and found that MINCR knock-down is associated with a reduction in cellular viability, due to an impairment in cell cycle progression. Differential gene expression analysis following RNAi showed a strongly significant enrichment of cell cycle genes among the genes down-regulate following MINCR knock-down. Interestingly these genes are enriched in MYC binding sites in their promoters, suggesting that MINCR acts as a modulator of MYC transcriptional program. Accordingly, following MINCR knock-down, we observed a reduction in the binding of MYC to the promoters of selected cell cycle genes. Finally we provide evidences that down-regulation of AURKA, AURKB and CTD1 may explain the reduction in cellular proliferation observed upon MINCR knock-down. We therefore suggest that MINCR is a newly identified player in the MYC transcriptional network able to control the expression of cell cycle genes.
PROVIDER: EGAD00001001441 | EGA |
REPOSITORIES: EGA
ACCESS DATA