Project description:This dataset contains RNA-seq, ATAC-seq, and ChIP-seq samples from the SJERG cohort. We applied ChIP-Seq for Dux4 on two B-cell ALL cell-lines(REH, Nalm6) along with INPUT. ATAC-Seq on two B-cell ALL cell-lines(REH, Nalm6) and xenograft of a B-cell ALL patient(ERG000016).
Project description:Chromosomal rearrangements deregulating hematopoietic transcription factors are common leukemia-initiating lesions in acute lymphoblastic leukemia (ALL). Here, we show that deregulation of the homeobox transcription factor gene DUX4 and the ETS transcription factor gene ERG are hallmarks of a subtype of B-progenitor ALL with a distinct gene expression profile that comprises up to 7% of B-ALL. DUX4 rearrangement and overexpression is present in all cases, and is accompanied by profound transcriptional deregulation of ERG, frequent ERG deletion and expression of a truncated ERG isoform, ERGalt. ERGalt utilizes a non-canonical first exon that is bound by DUX4 and induces its expression....
Project description:Deregulation of the Androgen Receptor (AR) transcriptional network is a common hallmark in prostate cancers. To achieve its precise transcriptional role, AR needs to co-operate specifically with a plethora of cofactors. In prostate cancers, AR transcription collaborators are frequently aberrantly over-expressed, altering the AR signaling pathway to one that promotes oncogenesis. Recently, the prostate cancer recurrent fusion gene, ERG, was shown to promote tumor progression by acting as a repressor of AR signaling. However, the exact mechanics and the functional consequences associated with this crosstalk between ERG and AR still remains relatively unknown. Interestingly, through chromatin immunoprecipitation coupled with massively parallel sequencing, we discover that ERG and other commonly over-expressed transcriptional co-repressors (HDAC1, HDAC2, HDAC3 and EZH2) are wired into an AR centric transcriptional network via a spectrum of distal enhancers and/or proximal promoters. We show that ERG represses several AR target genes involved in epithelial differentiation. Furthermore, we demonstrated that suppression of the androgen induced gene, Vinculin, by ERG and histone deacetylases increases cancer cell invasiveness. From our results, we propose that ERG, histone deactelyases and the histone methyltransferase, EZH2, could impede epithelial differentiation and contribute to prostate cancer progression, in part through modulating the transcriptional output of AR.
Project description:Deregulation of the Androgen Receptor (AR) transcriptional network is a common hallmark in prostate cancers. To achieve its precise transcriptional role, AR needs to co-operate specifically with a plethora of cofactors. In prostate cancers, AR transcription collaborators are frequently aberrantly over-expressed, altering the AR signaling pathway to one that promotes oncogenesis. Recently, the prostate cancer recurrent fusion gene, ERG, was shown to promote tumor progression by acting as a repressor of AR signaling. However, the exact mechanics and the functional consequences associated with this crosstalk between ERG and AR still remains relatively unknown. Interestingly, through chromatin immunoprecipitation coupled with massively parallel sequencing, we discover that ERG and other commonly over-expressed transcriptional co-repressors (HDAC1, HDAC2, HDAC3 and EZH2) are wired into an AR centric transcriptional network via a spectrum of distal enhancers and/or proximal promoters. We show that ERG represses several AR target genes involved in epithelial differentiation. Furthermore, we demonstrated that suppression of the androgen induced gene, Vinculin, by ERG and histone deacetylases increases cancer cell invasiveness. From our results, we propose that ERG, histone deactelyases and the histone methyltransferase, EZH2, could impede epithelial differentiation and contribute to prostate cancer progression, in part through modulating the transcriptional output of AR. Gene expression profiling of human prostate cancer VCaP cells with time course DHT stimulation using microarray.