Project description:WGBS data for 75 paired fastq, spread over 31 samples (4 healthy T-cell, 7 healthy B-cell, 20 B-cell CLL tumors) of the CancerEpiSys-PRECiSe project.
Project description:This dataset includes gene expression data from 103 primary tumour samples. 86 samples from this dataset have already been deposited into GEO (GSE36924), and has been duplicated here since the data has been processed differently. This data is also available through the International Cancer Genome Consortium (ICGC) Data Portal (http://dcc/icgc.org), under the project code: Pancreatic Cancer (QCMG, AU). Access to the restricted clinical data must be made through the ICGC Data Access Compliance Office (http://www.icgc.org/daco).
Project description:This dataset includes RNA-seq data from ileal and colonic biopsies at time of diagnosis for treatment-naive, uncomplicated Crohn's disease (CD) patients and matched controls. This is includes 56 CD patients each for ileal and colonic tissue and for controls, 46 colonic samples and 45 ileal samples. Clinical characteristics such as development of complications, disease remission, or progression to surgery were recorded with a mean follow-up of 6 years.
Project description:Barcode-based multiplexing methods can be used to increase throughput and reduce batch effects in large single-cell genomics studies. To evaluate methods for demultiplexing barcode-multiplexed data, we generated a dataset by labeling samples separately with barcode-tagged antibodies, mixing those samples, and progressively overloading a droplet-based scRNA-seq system.
Project description:This dataset was generated using adult (11 weeks) wild-type mice as a part of multiorgan profiling project. The samples were analyzed using the Chromium Single-cell 3'RNA-sequencing system.
Project description:Naive CD4+ T cells are the common precursors of multiple effector and memory T cell subsets and possess a high plasticity in terms of differentiation potential. This stem-cell like character is important for cell therapies aiming at regeneration of specific immunity. Cell surface proteins are crucial for recognition and response to signals mediated by other cells or environmental changes. Knowledge of cell surface proteins of human naive CD4+ T cells and their changes during the early phase of T cell activation is urgently needed for a guided differentiation of naive T cells and may support the selection of pluripotent cells for cell therapy.<br>Periodate oxidation and aniline-catalyzed oxime ligation (PAL) technology was applied with subsequent quantitative LC-MS/MS (PAL-qLC-MS/MS) to generate a dataset describing the surface proteome of human naive CD4+ T cells and to monitor dynamic changes during the early phase of activation. This led to the identification of 173 N-glycosylated surface proteins, of which 24 were previously not known to be expressed on human naive CD4+ T cells or have no defined role within T cell activation. To independently confirm the proteomic dataset and to analyse the cell surface by an alternative technique a systematic phenotypic expression analysis of surface antigens via flow cytometry was performed. This screening expanded the previous dataset, resulting in 229 surface proteins which are expressed on naive unstimulated and activated CD4+ T cells. Furthermore, we generated a surface expression atlas based on transcriptome data, experimental annotation and predicted subcellular localization, and correlated the proteomics result with this transcriptional dataset.<br>This extensive surface atlas provides an overall naive CD4+ T cell surface resource and will enable future studies aiming at a deeper understanding of mechanisms of T cell biology allowing the identification of novel immune targets usable for the development of therapeutic treatments.