Project description:We produce RNA-seq datasets of iPSC-derived motor neurons (iPSC-MN) from healthy controls and sporadic ALS patients and controls and familial ALS patients with pathogenic variants in TARDBP.
Project description:Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative condition characterized by loss of motor neurons in the brain and spinal cord. Expansions of a hexanucleotide repeat (GGGGCC) in the noncoding region of the C9ORF72 gene are the most common cause of the familial form of ALS (C9-ALS), as well as frontotemporal lobar degeneration and other neurological diseases. How the repeat expansion causes disease remains unclear, with both loss of function (haploinsufficiency) and gain of function (either toxic RNA or protein products) proposed. We report a cellular model of C9-ALS with motor neurons differentiated from induced pluripotent stem cells (iPSCs) derived from ALS patients carrying the C9ORF72 repeat expansion. No significant loss of C9ORF72 expression was observed, and knockdown of the transcript was not toxic to cultured human motor neurons. Transcription of the repeat was increased, leading to accumulation of GGGGCC repeat–containing RNA foci selectively in C9-ALS iPSC-derived motor neurons. Repeat-containing RNA foci colocalized with hnRNPA1 and Pur-?, suggesting that they may be able to alter RNA metabolism. C9-ALS motor neurons showed altered expression of genes involved in membrane excitability including DPP6, and demonstrated a diminished capacity to fire continuous spikes upon depolarization compared to control motor neurons. Antisense oligonucleotides targeting the C9ORF72 transcript suppressed RNA foci formation and reversed gene expression alterations in C9-ALS motor neurons. These data show that patient-derived motor neurons can be used to delineate pathogenic events in ALS. Transcriptome profiling from iPSC derived motor neurons compared to controls
Project description:Differentiated motor neurons from hiPSC derived from peripheral nerve fibroblasts of sporadic ALS patients and evaluated the gene expression profile by means microarray-linked to specific analysis tools. Two-condition experiment, ALS patients motor neurons vs. controls. Biological replicates: 3 ALS replicates, 3 control replicates.
Project description:Intermediate-length repeat expansions in ATAXIN-2 (ATXN2) are a strong genetic risk factor for amyotrophic lateral sclerosis (ALS). At the molecular level, ATXN2 intermediate expansions enhance TDP-43 toxicity and pathology. However, whether this triggers ALS pathogenesis at the cellular and functional level remains unknown. Here, we developed a human iPSC-derived model to investigate whether motor neurons derived from ALS patients carrying ATXN2 intermediate repeat expansions are transcriptomically distinct from healthy controls. For that, we performed RNA sequencing of motor neurons derived from 5 ATXN2-ALS iPSC lines and 5 healthy controls (HC).
Project description:Aims: Loss of nuclear TDP-43 characterises sporadic and most familial forms of amyotrophic lateral sclerosis (ALS). TDP-43 (encoded by TARDBP) has multiple roles in RNA processing. We aimed to determine whether 1) RNA splicing dysregulation is present in lower motor neurons in ALS and in a motor neuron-like cell model, and 2) TARDBP mutations (mtTARDBP) are associated with aberrant RNA splicing using patient-derived fibroblasts. Methods: Affymetrix exon arrays were used to study mRNA expression and splicing in lower motor neurons obtained by laser capture microdissection of autopsy tissue from individuals with sporadic ALS and TDP-43 proteinopathy. Findings were confirmed by qRT-PCR and in NSC34 motor neuronal cells following shRNA-mediated TDP-43 depletion. Exon arrays and immunohistochemistry were used to study mRNA splicing and TDP-43 expression in fibroblasts from patients with mtTARDBP-associated, sporadic and mutant SOD1-associated ALS. Results: We found altered expression of spliceosome components in motor neurons and widespread aberrations of mRNA splicing that specifically affected genes involved in ribonucleotide binding. This was confirmed in TDP-43 depleted NSC34 cells. Fibroblasts with mtTARDBP showed loss of nuclear TDP-43 protein and demonstrated similar changes in splicing and gene expression, that were not present in fibroblasts from patients with sporadic or SOD1-related ALS. Conclusion: Loss of nuclear TDP-43 is associated with RNA processing abnormalities in ALS motor neurons, patient-derived cells with mtTARDBP, and following artificial TDP-43 depletion, suggesting that splicing dysregulation directly contributes to disease pathogenesis. Key functional pathways affected include those central to RNA metabolism. RNA was extracted from fibroblasts grown from neurologically healthy controls (n=6) and 3 groups of patients with ALS: 1) sporadic cases (n=6); 2) cases due to mutations of SOD1 (n=4); 3) cases due to mutations of TARDBP (n=3). The three ALS groups were compared to the controls.
Project description:Aims: Loss of nuclear TDP-43 characterises sporadic and most familial forms of amyotrophic lateral sclerosis (ALS). TDP-43 (encoded by TARDBP) has multiple roles in RNA processing. We aimed to determine whether 1) RNA splicing dysregulation is present in lower motor neurons in ALS and in a motor neuron-like cell model, and 2) TARDBP mutations (mtTARDBP) are associated with aberrant RNA splicing using patient-derived fibroblasts. Methods: Affymetrix exon arrays were used to study mRNA expression and splicing in lower motor neurons obtained by laser capture microdissection of autopsy tissue from individuals with sporadic ALS and TDP-43 proteinopathy. Findings were confirmed by qRT-PCR and in NSC34 motor neuronal cells following shRNA-mediated TDP-43 depletion. Exon arrays and immunohistochemistry were used to study mRNA splicing and TDP-43 expression in fibroblasts from patients with mtTARDBP-associated, sporadic and mutant SOD1-associated ALS. Results: We found altered expression of spliceosome components in motor neurons and widespread aberrations of mRNA splicing that specifically affected genes involved in ribonucleotide binding. This was confirmed in TDP-43 depleted NSC34 cells. Fibroblasts with mtTARDBP showed loss of nuclear TDP-43 protein and demonstrated similar changes in splicing and gene expression, that were not present in fibroblasts from patients with sporadic or SOD1-related ALS. Conclusion: Loss of nuclear TDP-43 is associated with RNA processing abnormalities in ALS motor neurons, patient-derived cells with mtTARDBP, and following artificial TDP-43 depletion, suggesting that splicing dysregulation directly contributes to disease pathogenesis. Key functional pathways affected include those central to RNA metabolism. RNA was extracted from lower motor neurons obtained by laser capture microdissection from autopsy material from neurologically healthy controls (n=6) and cases of sporadic ALS (n=3) and ALS due to C9ORF72 mutations (n=3).
Project description:Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are associated with loss of nuclear TDP-43. Here we identify that TDP-43 regulates expression of the neuronal growth-associated factor stathmin-2. Lowered TDP-43 levels, which reduce its binding to sites within the first intron of stathmin-2 pre-mRNA, uncover a cryptic polyadenylation site whose utilization produces a truncated, non-functional mRNA. Reduced stathmin-2 expression is found in neurons trans-differentiated from patient fibroblasts expressing an ALS-causing TDP-43 mutation, in motor cortex and spinal motor neurons from sporadic ALS patients and familial ALS patients with expansion in C9orf72, and in induced pluripotent stem cell (iPSC)-derived motor neurons depleted of TDP-43. Remarkably, while reduction in TDP-43 is shown to inhibit axonal regeneration of iPSC-derived motor neurons, rescue of stathmin-2 expression restores axonal regenerative capacity. Thus, premature polyadenylation-mediated reduction in stathmin-2 is a hallmark of ALS/FTD that functionally links reduced nuclear TDP-43 function to enhanced neuronal vulnerability.
Project description:RNA sequencing analysis of human iPSC-derived motor neurons generated from two C9ORF72 ALS/FTD patient lines, treated with negative control ASO (NC ASO) or PIKFYVE ASO. The goal of this study is to evaluate the effect of PIKFYVE suppression in rescuing ALS motor neuron degeneration.
Project description:Aims: Loss of nuclear TDP-43 characterises sporadic and most familial forms of amyotrophic lateral sclerosis (ALS). TDP-43 (encoded by TARDBP) has multiple roles in RNA processing. We aimed to determine whether 1) RNA splicing dysregulation is present in lower motor neurons in ALS and in a motor neuron-like cell model, and 2) TARDBP mutations (mtTARDBP) are associated with aberrant RNA splicing using patient-derived fibroblasts. Methods: Affymetrix exon arrays were used to study mRNA expression and splicing in lower motor neurons obtained by laser capture microdissection of autopsy tissue from individuals with sporadic ALS and TDP-43 proteinopathy. Findings were confirmed by qRT-PCR and in NSC34 motor neuronal cells following shRNA-mediated TDP-43 depletion. Exon arrays and immunohistochemistry were used to study mRNA splicing and TDP-43 expression in fibroblasts from patients with mtTARDBP-associated, sporadic and mutant SOD1-associated ALS. Results: We found altered expression of spliceosome components in motor neurons and widespread aberrations of mRNA splicing that specifically affected genes involved in ribonucleotide binding. This was confirmed in TDP-43 depleted NSC34 cells. Fibroblasts with mtTARDBP showed loss of nuclear TDP-43 protein and demonstrated similar changes in splicing and gene expression, that were not present in fibroblasts from patients with sporadic or SOD1-related ALS. Conclusion: Loss of nuclear TDP-43 is associated with RNA processing abnormalities in ALS motor neurons, patient-derived cells with mtTARDBP, and following artificial TDP-43 depletion, suggesting that splicing dysregulation directly contributes to disease pathogenesis. Key functional pathways affected include those central to RNA metabolism. RNA was extracted from NSC34 motor neuronal cells depleted of TDP-43 by shRNA (n=4), treated with control shGFP (n=4), and treated with control shLuciferase (n=3).