Project description:In this study, we compared the two long-read sequencing platforms, namely the single-molecule real-time sequencing by Pacific Biosciences and nanopore sequencing by Oxford Nanopore Technologies, for the analysis of cell-free DNA from plasma. Cell-free DNA from plasma samples of 31 pregnant women at different trimesters, 6 hepatitis B carriers, and 8 patients with hepatocellular carcinoma were sequenced with the two platforms.
Project description:Genome-wide DNA methylation profiling was performed in peripheral leukocytes to identify biomarkers that could track hepatitis B progression to hepatocellular carcinoma (HCC). Samples included 48 HBsAg carriers who developed HCC and 48 HBsAg carriers who did not during follow-up.
Project description:Chronic hepatitis B virus (HBV) infection is a serious global public health problem. To identify susceptibility loci for disease progression of HBV infection, we performed this genome-wide association study using DNA pools of case and control constructed by progressed HBV carriers (acute liver failure, liver cirrhosis, hepatocellular carcinoma) and asymptomatic HBV carriers separately. Performing GWAS on pools of DNA samples is an effective strategy to reduce the costs of studies and pooling DNA has been shown to be an efficient method to select candidate susceptibility loci for follow-up by individual genotyping. Affymetrix Genome-Wide Human Mapping SNP6.0 Arrays were performed for DNA pools, which were constructed by pooling 120 ng DNA from each participant. Four independent pools were created: case A was acute liver failure group (n = 86), case B was liver cirrhosis group (n = 88), case C was hepatocellular carcinoma group (n = 90) and case D was asymptomatic HBV carriers (n = 66) that was considered as control. Twelve chips (each pool was replicated in triplicate) were finished according to the manufacturer's instruction.
Project description:Study goal is to disclose features of gene expressio profile of non-cancerous liver-infiltrating lymphocytes of type C hepatitis patients with hepatocellular carcinomas and tumor-infiltrating lymphocytes of type C hepatitis patients with hepatocellular carcinomas. Keywords: gene expression profile, non-cancerous liver-infiltrating lymphocytes, tumor-infiltrating lymphocytes, type C hepatitis, hepatocellular carcinoma Non-cancerous liver-infiltrating lymphocytes were obtained by laser capture microdissection from surgically resected liver tissues of 12 type C hepatitis patients with hepatocellular carcinoma. The mRNA was amplified and expression profile was comprehensively analyzed with reference RNA using oligo-DNA chip. Tumor-infiltrating lymphocytes were obtained by laser capture microdissection from surgically resected cancer tissues of 12 type C hepatitis patients with hepatocellular carcinoma. The mRNA was amplified and expression profile was comprehensively analyzed with reference RNA using oligo-DNA chip.
Project description:Chronic hepatitis B virus (HBV) infection is a serious global public health problem. To identify susceptibility loci for disease progression of HBV infection, we performed this genome-wide association study using DNA pools of case and control constructed by progressed HBV carriers (acute liver failure, liver cirrhosis, hepatocellular carcinoma) and asymptomatic HBV carriers separately. Performing GWAS on pools of DNA samples is an effective strategy to reduce the costs of studies and pooling DNA has been shown to be an efficient method to select candidate susceptibility loci for follow-up by individual genotyping.
Project description:Small, non-coding RNAs control gene expression post-transcriptionally and play important roles in virus-host interactions. Within the liver, the microRNA (miRNA) miR-122 is essential for replication of hepatitis C virus (HCV), while repression of miR-148a by hepatitis B virus (HBV) may enhance tumorigenesis. Despite their importance to the outcome of these infections, few previous studies have described unbiased profiling of small RNAs in the liver during chronic viral hepatitis. Here, we sequenced small (14-40 nts) RNAs in liver from subjects with chronic hepatitis B and C. We found that small RNAs derived from tRNAs, specifically 5’ tRNA-halves (“5’ tRHs”, ~31-34 nts), are abundant in liver and significantly increased during chronic viral infection in humans and also chimpanzees. In most infected livers, 5’ tRH abundance exceeded that of miRNAs. In contrast, in hepatocellular carcinoma (HCC) tissue from these subjects, tRH abundance was reduced concomitant with decreased expression of the tRNA-cleaving ribonuclease, angiogenin. Although tRHs have been identified in mice, our results show they are abundantly expressed in human tissue, increased in chronic viral infection, and decreased in liver cancer. Our findings highlight the potential biological and clinical relevance of these small non-coding RNAs. Small RNA-seq of liver samples from control subjects (n=4), subjects with chronic hepatitis B (n=4) and hepatitis B associated hepatocellular carcinoma (n=4, 3 out of 4 matched with non-tumor tissue) and subjects with chronic hepatitis C (n=4) and tissue from hepatocellular carcinoma of the same patients. Also, small RNA-seq of AGO2 and IgG pulldown in FT3-7 cells. Sequenced AGO2 pulldown (n=3), IgG pulldown (n=2) and total small RNA from FT3-7 cells (n=3). This dataset is part of the TransQST collection.
Project description:During pregnancy, the Zika virus (ZIKV) can be vertically transmitted, causing Congenital Zika Syndrome (CZS) in fetuses. ZIKV infection in early gestational trimesters increases the chances to develop CZS. This syndrome involves several pathologies with a difficult diagnosis, which usually occurs in the postnatal stage. In this work, we aim to identify biological processes and molecular pathways related to CZS development and propose a series of putative protein and metabolite biomarkers for CZS prognosis in early pregnancy trimesters. Twenty-five serum samples of pregnant women were analyzed. For biological analysis, samples were separated into 3 biological groups composed of a control group of healthy pregnant women and two groups of ZIKV-infected pregnant women bearing non- microcephalic and microcephalic fetuses. Control and ZIKV-infected groups - without microcephalic fetuses - were subdivided into healthy and Cognitive Developmental Delay (CDD) newborns for biomarker analysis. We detected over 1,000 proteins and 500 metabolites by bottom-up proteomics and untargeted metabolomics, respectively. Statistical approaches - (t-Student, Limma, ANOVA, and DIABLO) - were applied to find CZS differentially abundant proteins (DAP) and metabolites (DAM). Enrichment analysis (i.e., biological processes and molecular pathways) of the DAP and the DAM allowed us to identify the ECM organization and proteoglycans, amino acid metabolism, and arachidonic acid metabolism as signatures in the CZS development. Five proteins and four metabolites were selected as CZS biomarkers candidates. The protein-based model indicated superior performance values for the Vitamin K-dependent protein S, Selenoprotein P, Inter-alpha- trypsin inhibitor heavy chain H2, Kallistatin, and Protein Z-dependent protease inhibitor proteins. Furthermore, the metabolite-based model was able to predict CZS with a probability of 90%. Serum multi-omics analysis led us to propose for further studies nine potential biomarkers for CZS early prognosis with high sensitivity and specificity.
Project description:This research analyzes the potential of long non-coding RNAs (lncRNAs) as markers in determining the necessity of antiviral treatment in pregnant women by examining alterations in the expression profile of serum lncRNAs in pregnant women with elevated hepatitis B viral load (HBVL) under antiviral and non-antiviral treatment regimens between the second trimester and delivery.