Project description:Pancreatic cancer is a complex disease with a desmoplastic stroma, extreme hypoxia, and inherent resistance to therapy. Understanding the signaling and adaptive response of such an aggressive cancer is key to making advances in therapeutic efficacy and understanding disease progression. Redox factor-1 (Ref-1), a redox signaling protein, regulates the DNA binding activity of several transcription factors, including HIF-1. The conversion of HIF-1 from an oxidized to reduced state leads to enhancement of its DNA binding. In our previously published work, knockdown of Ref-1 under normoxia resulted in altered gene expression patterns on pathways including EIF2, protein kinase A, and mTOR. In this study, single cell RNA sequencing (scRNA-seq) and proteomics were used to explore the effects of Ref-1 on metabolic pathways under hypoxia.Results: We also integrated the scRNA data analysis with the proteomic analysis and found that the differentially expressed genes and pathways identified from the scRNA-seq data are highly consistent to the significant proteins observed in the proteomics data, especially for the upregulated cell cycle and transcription pathways and downregulated metabolic, apoptosis and signaling pathways under hypoxia. Conclusion: The scRNA-seq and proteomics data consistently demonstrated down-regulated central metabolism pathways in APE1/Ref-1 knockdown vs scrambled control under both normoxia and hypoxia conditions. Experimental Methods: scRNA-seq comparing pancreatic cancer cells expressing less than 20% of the Ref-1 protein was analyzed using left truncated mixture Gaussian model. Matched samples were also collected for bulk proteomic analysis of the four conditions. scRNA-seq data was validated using proteomics and qRT-PCR. Ref-1’s role in mitochondrial function was confirmed using mitochondrial function assays and qRT-PCR. Results: We also integrated the scRNA data analysis with the proteomic analysis and found that the differentially expressed genes and pathways identified from the scRNA-seq data are highly consistent to the significant proteins observed in the proteomics data, especially for the upregulated cell cycle and transcription pathways and downregulated metabolic, apoptosis and signaling pathways under hypoxia. Conclusion: The scRNA-seq and proteomics data consistently demonstrated down-regulated central metabolism pathways in APE1/Ref-1 knockdown vs scrambled control under both normoxia and hypoxia conditions.
Project description:Plasmodium-specific CD4+ T cells from mice infected with Plasmodium chabaudi chabaudi AS parasites were recovered at Days 0, 7, and 28 to undergo processing and generate scRNA-seq dataset. At Day 28, mice were administered with either saline or artesunate (intermittent artesunate therapy - IAT). scRNA-seq dataset was analysed to investigate transcriptome dynamics of CD4+ T cells from effector to memory states.
Project description:Diminishing potential to replace damaged tissues is a hallmark for aging of somatic stem cells, but the mechanisms leading to aging remain elusive. We performed a proteome-wide analysis of human hematopoietic stem and progenitor cells (CD34+) along with five other cell types that constitute the bone marrow niche, namely, lymphocytes and precursors; monocytes/macrophages and precursors; granulocytic precursors and erythroid precursors, as well as mesenchymal stem/stromal cells. In total, we analyzed 270 samples from 59 human subjects. The data represents a valuable resource for further in-depth mechanistic analyses, and for validation of knowledge gained from animal models.
Project description:Our study focuses on understanding the early transcriptional changes taking place during the divergence of the adult muscle precursors that give rise to indirect flight muscles and direct flight muscles in Drosophila. We analyzed the heterogenous cell population of the adult muscle precursors by scRNA-seq and build an integrated single-cell reference atlas. We addressed the differences among muscle-type and different cell state during myoblast differentiation. Also, our dataset includes the transcriptional profile of the epithelial cells localized in the presumptive hinge and notum of third instar larval wing discs. In addition we studied the functional relevance of Amalgam in flight muscle development by depleting Ama expression specifically in the adult muscle precursors. We determined the transcriptional changes and perturbations in AMP cell identity upon Ama knockdown.
Project description:Plasmodium-specific CD4+ T cells from mice infected with Plasmodium chabaudi chabaudi AS parasites were recovered at Days 0, 7, 10, 14, 17, 21, 28 to undergo processing and generate scRNA-seq dataset. From Day 10 onwards, mice were administered with either saline or artesunate (intermittent artesunate therapy - IAT). scRNA-seq dataset was analysed to investigate transcriptome dynamics of CD4+ T cells from effector to memory states.
Project description:Here, we performed single cell RNA sequencing (scRNA-seq) of human fetal liver and bone marrow tissue samples from 15 trisomy 21 (Ts21) and 3 healthy foetuses (median age 14 post-conception weeks). The data set is composed of approximately 1.1 million cells from three different populations: CD235- (niche and haematopoietic cells depleted of erythrocytes), CD34+/Lin- (haematopoietic progenitors), and CD45+ (all haematopoietic cells).
Project description:During postnatal life, thymopoiesis depends on the continuous colonization of the thymus by bone marrow-derived hematopoietic progenitors that migrate through the bloodstream. The current understanding of the nature of thymic immigrants is largely based on data from pre-clinical models. Here, we employed single-cell RNA sequencing (scRNA-seq) to examine the immature postnatal thymocyte population in humans. Integration of bone marrow and peripheral blood precursor datasets identified two putative thymus seeding precursors that varied in expression of CD7; CD10; and the homing receptors CCR7, CCR9, and ITGB7. Whereas both precursors supported T cell development, only one contributed to intrathymic dendritic cell (DC) differentiation, predominantly of plasmacytoid dendritic cells. Trajectory inference delineated the transcriptional dynamics underlying early human T lineage development, enabling prediction of transcription factor (TF) modules that drive stage-specific steps of human T cell development. This comprehensive dataset defines the expression signature of immature human thymocytes and provides a resource for the further study of human thymopoiesis.
Project description:Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration. This represents the human CD34 ChIP-seq portion of this dataset.