Project description:Cancer cell lines can provide robust and facile biological models for the generation and testing of hypothesis in the early stages of drug development and caner biology. Although clinical trials remain the ultimate scientific testing ground for anticancer therapies, the use of appropriate model systems to explore the molecular basis of drug activity and to identify predictive biomarkers during their development can have a profound effect on the design, cost and ultimate success of new cancer drug development. In order to capture the high degree of genomic diversity in cancer and to identify rare molecular subtypes, we have assembled a collection of >1000 cancer cell lines. These lines have been characterised using whole exome sequencing, genome wide analysis of copy number, mRNA gene expression profiling and DNA methylation analysis (http://cancer.sanger.ac.uk/cell_lines). To further characterise this panel of cell lines we have now compiled data for RNA sequencing. The current study represent data for ~450 of the cell lines in the panel, data for the remaining lines can be accessed via the CGHUB data browser hosted at UCSC. <br>This ArrayExpress record contains only meta-data. Raw data files have been archived at the European Genome-Phenome Archive (EGA, www.ebi.ac.uk/ega) by the consortium, with restricted access to protect sample donors' identity. The relevant accessions of the EGA data set is EGAD00001001357 under EGA study accession EGAS00001000828.
Project description:For many years, immortalized cell lines have been used as model systems for cancer research. Cell line panels were established for basic research and drug development, but did not cover the full spectrum of leukemia and lymphoma. Therefore, we now developed a novel panel (LL-100), 100 cell lines covering 22 entities of human leukemia and lymphoma including T-cell, B-cell and myeloid malignancies. Importantly, all cell lines are unequivocally authenticated and assigned to the correct tissue. Cell line samples were proven to be free of mycoplasma and virus contamination. Whole exome sequencing (WES) and RNA sequencing (RNA-seq) of the hundred authenticated leukemia-lymphoma cell lines were conducted with a uniform methodology to complement existing data on these publicly available cell lines. This part captures WES. This data set will be useful for understanding the function of oncogenes and tumor suppressor genes and to develop targeted therapies.
Project description:CTCF ChIP-seq of 39 primary samples derived from human acute leukemias, namely AML, T-ALL and mixed myeloid/lymphoid leukemias with CpG Island Methylator Phenotype (CIMP). Due to patient confidentiality considerations, the raw data files for this dataset have been deposited to the EGA controlled-access archive under the accession numbers EGAS00001007094 (study); EGAD00001011059 (dataset).
Project description:This study involves characterization of four head and neck cancer cell lines -- NT8e, OT9, AW13516 and AW8507, established from Indian head and neck cancer patients, using SNP arrays, whole exome and whole transcriptome sequencing.
Project description:H3K27ac ChIP-seq of 79 primary samples derived from human acute leukemias, namely AML, T-ALL and mixed myeloid/lymphoid leukemias with CpG Island Methylator Phenotype (CIMP). In addition, 4 samples derived from CD34+ cord blood cells of healthy donors were included. Due to patient confidentiality considerations, the raw data files for this dataset have been deposited to the EGA controlled-access archive under the accession numbers EGAS00001007094 (study); EGAD00001011060 (dataset).
Project description:Single-cell RNA sequencing was performed on bone marrow mononuclear of a patient with acute myeloid leukemia with erythroid differentiation of the blasts and on peripheral blood mononuclear cells of a patient with acute myeloid leukemia with megakaryocytic differentiation of the blasts. Raw data for this dataset can be found at the EGA under accession EGAS00001006819.
Project description:Cutaneous T-cell lymphoma (CTCL) is a malignancy of skin-homing T cells. A subgroup of patients develops large cell transformation with progression to an aggressive lymphoma and with poor survival. We aimed to study the transformed CTCL (tCTCL) ecosystem using integrative approaches spanning whole-exome sequencing (WES), single-cell RNAseq, and immune profiling in a unique cohort of 56 patients with tCTCL
Project description:To evaluate the impact of blood collection tubes on extracellular RNA (exRNA) sequencing, 10 different blood collection tubes were compared by applying RNA Exome sequencing (Illumina) to exRNA from human healthy donor plasma or serum. Three time spans between blood draw and downstream processing were evaluated for each of the tubes. Preservation tubes were processed immediately upon blood collection (T0), after 24 hours (T24), or after 72 hours (T72). Non-preservation plasma and serum tubes were processed immediately upon blood collection (T0), after 4 hours (T4), or after 16 hours (T16). Due to donor privacy concerns the raw data for this study have been submitted to the controlled-access archive EGA under the accession EGAS00001005263.
Project description:We profile single cells from patients with colorectum cancer using Chromium 3’ and 5’ single-cell RNA-sequencing. Patients EXT001, EXT009, and EXT012 from the KUL dataset were first analyzed by Lee et al., 2020, and the raw data are available in ArrayExpress under the accession codes E-MTAB-8410 and E-MTAB-8107. Patients EXT018, EXT048, EXT113, and EXT121 from KUL dataset were previously analyzed by Joanito et al., 2022. The raw data of those patients are available in EGA under the accession codes EGAD00001008584 and EGAD00001008585.