Project description:Embryonic genome activation (EGA) is orchestrated by an intrinsic developmental program initiated during oocyte maturation with translation of stored maternal mRNAs. Here we show that tankyrase, a poly(ADP-ribosyl) polymerase that regulates β-catenin levels, undergoes programmed translation during oocyte maturation and serves an essential role in mouse EGA. Newly translated TNKS triggers proteasomal degradation of axin, reducing targeted destruction of β-catenin and promoting β-catenin-mediated transcription of target genes, including Myc. MYC mediates ribosomal RNA transcription in 2-cell embryos, supporting global protein synthesis. Suppression of tankyrase activity using knockdown or chemical inhibition causes loss of nuclear β-catenin and global reductions in transcription and histone H3 acetylation. Chromatin and transcriptional profiling indicate that development arrests prior to the mid-2-cell stage, mediated in part by reductions in β-catenin and MYC. These findings indicate that post-transcriptional regulation of tankyrase serves as a ligand-independent developmental mechanism for post-translational β-catenin activation and is required to complete EGA.
Project description:CTCF ChIP-seq of 39 primary samples derived from human acute leukemias, namely AML, T-ALL and mixed myeloid/lymphoid leukemias with CpG Island Methylator Phenotype (CIMP). Due to patient confidentiality considerations, the raw data files for this dataset have been deposited to the EGA controlled-access archive under the accession numbers EGAS00001007094 (study); EGAD00001011059 (dataset).
Project description:H3K27ac ChIP-seq of 79 primary samples derived from human acute leukemias, namely AML, T-ALL and mixed myeloid/lymphoid leukemias with CpG Island Methylator Phenotype (CIMP). In addition, 4 samples derived from CD34+ cord blood cells of healthy donors were included. Due to patient confidentiality considerations, the raw data files for this dataset have been deposited to the EGA controlled-access archive under the accession numbers EGAS00001007094 (study); EGAD00001011060 (dataset).
Project description:Bariatric surgical techniques are known to cause weight loss and diabetes remission to varying degrees in severly obese patients. However, the mechanisms involved in the restoration of beta-cell function remain to be uncovered. In this study, the leptin-deficient ob/ob mouse was used as a model to investigate the effect of EGA bariactric surgery on pancreatic islet miRNA expression.
Project description:RNA was isolated from purified human CD8 cells that were incubated with anti-HER2/CD3 TDB in the presence of SK-BR-3 cells. This dataset only contains the metadata and processed data. Raw data can be accessed via the EGA accession EGAS00001003734
Project description:Single-cell RNA-seq libraries were generated from human PBMCs that were incubated with anti-HER2/CD3 TDB in the presence of KPL-4 cells. This dataset only contains the metadata and processed data. Raw data can be accessed via the EGA accession EGAS00001003734
Project description:Hi-C of 17 primary samples obtained from human acute leukemias, namely AML, T-ALL and mixed myeloid/lymphoid leukemias with CpG Island Methylator Phenotype (CIMP). As healthy controls, Hi-C of CD34+ HSPCs from 3 healthy donors were used. Due to patient confidentiality considerations, the raw data files for this dataset have been deposited to the EGA controlled-access archive under the accession numbers EGAS00001007094 (study); EGAD00001011051 (dataset).
Project description:Reprogramming of histone modification regulates gene expression and mammal preimplantation development. Trimethylation of lysine 4 on histone 3 (H3K4me3) has unique landscape in mouse oocytes and early embryos. However, the dynamics and function of H3K4me3 in livestock embryos remain unclear. To address how it is reprogrammed in domestic animals, we profiled changes of H3K4me3 during bovine early embryo development. Notably, the overall signal of H3K4me3 decreased during embryonic genome activation (EGA). By utilizing ultra-low-input native ChIP-seq (ULI-NChIP-seq) technology, we observed widespread broad H3K4me3 domains in oocytes and embryos. The signal of broad H3K4me3 began to decrease after fertilization and was lowest after EGA. Along with the removal of broad H3K4me3, deposition of H3K4me3 at promoter regions enhanced gradually. Besides, the transcriptional activity and signal of promoter H3K4me3 showed positive correlation after the erasure of broad H3K4me3 at 16-cell stage. Moreover, knocking down of demethylases KDM5A, KDM5B and KDM5C caused EGA delay and blastocyst formation failure. RNA-seq analysis revealed 47.8% down-regulated genes in knockdown embryos at 8/16-cell stage were EGA genes, and 63.1% of up-regulated genes were maternal transcripts. Particularly, the positive correlation between transcriptional activity and promoter H3K4me3 during EGA was restrained when knocking down of KDM5A, KDM5B and KDM5C. Overall, our work initiatively mapped the genomic reprogramming of H3K4me3 during bovine preimplantation development, and KDM5A/B/C played roles in modulating oocyte-to-embryonic transition (OET) through timely erasure of broad H3K4me3 domains far away from promoters.
Project description:The interplay between the extracellular matrix (ECM) and prostate cancer (PCa) tumor has been shown to increase ECM stiffness, correlating with more aggressive disease forms. However, the impact of ECM stiffness on the androgen receptor (AR), a primary PCa treatment target, remains elusive. Here, we aimed to explore whether matrix stiffness influences PCa progression, transcriptional regulation, chromatin state, and AR function in AR-positive PCa cells under varying ECM stiffness conditions. We utilized ATAC-seq and RNAseq in different ECM conditions and the SUC2 metastatic prostate adenocarcinoma patient dataset to understand the role of ECM stiffness on chromatin state, androgen response genes and to evaluate the effect of matrix stiffness on prostate cancer progression. Results showed that increased ECM stiffness elevated the expression of genes related to proliferation and differentiation. In contrast, androgen response genes were most induced in soft ECM conditions. Combining chromatin accessibility with transcriptomic results revealed that androgen response genes were more transcriptionally available in soft ECM conditions. Additionally, increased ECM stiffness upregulated genes associated with low overall survival in the SUC2 dataset. Taken together, our results indicate that high expression of hard matrix stiffness genes potentially promotes prostate cancer progression leading to more aggressive forms of the disease with poor survival rate.
Project description:Bariatric surgical techniques are known to cause weight loss and diabetes remission to varying degrees in severly obese patients. However, the mechanisms involved in the restoration of beta-cell function remain to be uncovered. In this study, the leptin-deficient ob/ob mouse was used as a model to investigate the effect of EGA bariactric surgery on pancreatic islet gene expression.