Project description:This data was generated by ENCODE. If you have questions about the data, contact the submitting laboratory directly (Ruan Xiaoan mailto:ruanx@gis.a-star.edu.sg). If you have questions about the Genome Browser track associated with this data, contact ENCODE (mailto:genome@soe.ucsc.edu). This track is produced as part of the ENCODE Project. It shows high throughput sequencing of RNA samples from tissues or sub cellular compartments from cell lines included in the ENCODE Transcriptome subproject. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf
Project description:This track is produced as part of the ENCODE Project. It shows high throughput sequencing of RNA samples from tissues or sub cellular compartments from cell lines included in the ENCODE Transcriptome subproject. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf The RNA-Seq data were generated from high quality polyA RNA, and the RNA-Seq libraries were constructed using SOLiD Whole Transcriptome (WT) protocol and reagent kit. Total RNA in good quality was used as starting materials and purified twice through MACs polyT column aimed to enrich polyA and remove any contaminants (e.g., rRNA, tRNA, DNA, protein etc.). A one microgram enriched polyA RNA sample was then fragmented to small pieces, and a gel-based selection method was performed to collect fragmented random polyA at a size-range of 50-150 nt in length. The collected fragmental RNA was then hybridized and ligated to a mix of adapters provided from ABI, followed by reverse transcription to generate corresponding cDNAs. The resulting cDNA library was further amplified by PCR and sequenced by SOLiD platform for single reads at 35 bp length (new version in 50 bp length). Cells were grown according to the approved ENCODE cell culture protocols. Data: The SOLiD-generated RNA-Seq reads were 35 bp in length. An initial filtering process was performed to remove any non-desirable contamination sequences, such as rRNA, tRNA, and repeats etc. A read-split mapping approach was developed to map the 35 bp reads onto the reference genome (GRCh37/hg19) excluding mitochondrion, haplotypes, randoms and chromosome Y. Mapping parameters: Strand specific mapping was done using Applied Biosystems' SOLiD alignment where all the reads were mapped to the genome, and to exon-exon junction database. Seed and extend strategy is adopted where initial seed length of 25 is mapped with maximum of 2 mismatches and then extended to read length, each color space match is awarded a score of +1 and each mismatch is awarded a penalty of -2. After extension each read is trimmed to its maximum score, shortest length. The color space sequences are then converted into base space and checked to ensure that each sequence has a maximum of 2 base pair mismatches. If any sequence has more than 2 mismatches, then that sequence is discarded.
Project description:This data was generated by ENCODE. If you have questions about the data, contact the submitting laboratory directly (Yijun Ruan mailto:ruanyj@gis.a-star.edu.sg). If you have questions about the Genome Browser track associated with this data, contact ENCODE (mailto:genome@soe.ucsc.edu). This track, produced as part of the ENCODE Project, contains deep sequencing DNase data that will be used to identify sites where regulatory factors bind to the genome (footprints). Footprinting is a technique used to define the DNA sequences that interact with and bind DNA-binding proteins, such as transcription factors, zinc-finger proteins, hormone-receptor complexes, and other chromatin-modulating factors like CTCF. The technique depends upon the strength and tight nature of protein-DNA interactions. In their native chromatin state, DNA sequences that interact directly with DNA-binding proteins are relatively protected from DNA degrading endonucleases, while the exposed/unbound portions are readily degraded by such endonucleases. A massively parallel next-generation sequencing technique to define the DNase hypersensitive sites in the genome was adopted. Sequencing these next-generation-sequencing DNase samples to significantly higher depths of 300-fold or greater produces a base-pair level resolution of the DNase susceptibility maps of the native chromatin state. These base-pair resolution maps represent and are dependent upon the nature and the specificity of interaction of the DNA with the regulatory/modulatory proteins binding at specific loci in the genome; thus they represent the native chromatin state of the genome under investigation. The deep sequencing approach has been used to define the footprint landscape of the genome by identifying DNA motifs that interact with known or novel DNA binding proteins. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf
Project description:This data was generated by ENCODE. If you have questions about the data, contact the submitting laboratory directly (Yijun Ruan mailto:ruanyj@gis.a-star.edu.sg). If you have questions about the Genome Browser track associated with this data, contact ENCODE (mailto:genome@soe.ucsc.edu). This track, produced as part of the ENCODE Project, contains deep sequencing DNase data that will be used to identify sites where regulatory factors bind to the genome (footprints). Footprinting is a technique used to define the DNA sequences that interact with and bind DNA-binding proteins, such as transcription factors, zinc-finger proteins, hormone-receptor complexes, and other chromatin-modulating factors like CTCF. The technique depends upon the strength and tight nature of protein-DNA interactions. In their native chromatin state, DNA sequences that interact directly with DNA-binding proteins are relatively protected from DNA degrading endonucleases, while the exposed/unbound portions are readily degraded by such endonucleases. A massively parallel next-generation sequencing technique to define the DNase hypersensitive sites in the genome was adopted. Sequencing these next-generation-sequencing DNase samples to significantly higher depths of 300-fold or greater produces a base-pair level resolution of the DNase susceptibility maps of the native chromatin state. These base-pair resolution maps represent and are dependent upon the nature and the specificity of interaction of the DNA with the regulatory/modulatory proteins binding at specific loci in the genome; thus they represent the native chromatin state of the genome under investigation. The deep sequencing approach has been used to define the footprint landscape of the genome by identifying DNA motifs that interact with known or novel DNA binding proteins. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf Cells were grown according to the approved ENCODE cell culture protocols. Digital DNaseI was performed by DNaseI digestion of intact nuclei, followed by isolating DNaseI 'double-hit' fragments as described in Sabo et al. (2006), and direct sequencing of fragment ends (which correspond to in vivo DNaseI cleavage sites) using the Solexa platform (27 bp reads). High-quality reads were mapped to the GRCh37/hg19 human genome using Bowtie 0.12.5 (Eland was used to map to NCBI36/hg18); only unique mappings were kept. DNaseI sensitivity is directly reflected in raw tag density (Signal), which is shown in the track as density of tags mapping within a 150 bp sliding window (at a 20 bp step across the genome). DNaseI hypersensitive zones (HotSpots) were identified using the HotSpot algorithm described in Sabo et al. (2004). False discovery rate thresholds of 1.0% (FDR 0.01) were computed for each cell type by applying the HotSpot algorithm to an equivalent number of random uniquely mapping 36-mers. DNaseI hypersensitive sites (DHSs or Peaks) were identified as signal peaks within 1.0% (FDR 0.01) hypersensitive zones using a peak-finding algorithm. Only DNase Solexa libraries from unique cell types producing the highest quality data, as defined by Percent Tags in Hotspots (PTIH ~40%) were designated for deep sequencing to a depth of over 200 million tags.
Project description:Double homeobox 4 (DUX4) is expressed in at the early preimplantation stage in human embryos. Here we show that induced human DUX4 expression substantially alters the non-coding chromatin accessibility of non-coding DNA and activates thousands of newly identified putative transcribed enhancer-like regions, preferentially located within ERVL-MaLR repeat elements. CRISPR activation of transcribed enhancers by C-terminal DUX4 motifs results in the increased expression of target embryonic genome activation (EGA) genes ZSCAN4 and KHDC1P1. We show that DUX4 is markedly enriched in human zygotes, followed by intense nuclear DUX4 localization preceding and coinciding with minor EGA. DUX4 knockdown in human zygotes led to changes in the EGA transcriptome but did not terminate the embryos. We also show that the DUX4 protein interacts with the Mediator complex via the C-terminal KIX binding motif. Our findings contribute to the understanding of DUX4 as a regulator of the non-coding genome.