Project description:Women make up over one-half of all doctoral recipients in biology-related fields but are vastly underrepresented at the faculty level in the life sciences. To explore the current causes of women's underrepresentation in biology, we collected publicly accessible data from university directories and faculty websites about the composition of biology laboratories at leading academic institutions in the United States. We found that male faculty members tended to employ fewer female graduate students and postdoctoral researchers (postdocs) than female faculty members did. Furthermore, elite male faculty--those whose research was funded by the Howard Hughes Medical Institute, who had been elected to the National Academy of Sciences, or who had won a major career award--trained significantly fewer women than other male faculty members. In contrast, elite female faculty did not exhibit a gender bias in employment patterns. New assistant professors at the institutions that we surveyed were largely comprised of postdoctoral researchers from these prominent laboratories, and correspondingly, the laboratories that produced assistant professors had an overabundance of male postdocs. Thus, one cause of the leaky pipeline in biomedical research may be the exclusion of women, or their self-selected absence, from certain high-achieving laboratories.
Project description:For decades, studies have revealed students' decreasing interest in science. Extracurricular learning opportunities-the Science Olympiads being a publicly well-known example-are an important means identified to tackle this challenge and help students further differentiate their interests. Better understanding the underlying constructs and characteristics of Science Olympiad exams can provide several implications not just for Science Olympiads, but also science education more broadly, for example, with regard to how the competitions' international juries defines expectations for high performance in the life sciences. This study analyzes exams set by the International Biology Olympiad (IBO) as an example for a top-tier international competition in the life sciences. The findings extend previous works on test item characteristics toward student competitions and high-performer education. We conducted a systematic analysis of N = 703 closed-ended and laboratory test items from six IBO assessment years across the competition's history. A categorical framework was developed to analyze items according to four areas: formal characteristics, content and practices, cognitive aspects, and the use of representations. Our findings highlight assessment characteristics used to challenge high-performing students. We derive implications for general life sciences education, as well as for further developing the assessments of Science Olympiads.
Project description:BackgroundLife scientists need help in coping with the plethora of fast growing and scattered knowledge resources. Ideally, this knowledge should be integrated in a form that allows them to pose complex questions that address the properties of biological systems, independently from the origin of the knowledge. Semantic Web technologies prove to be well suited for knowledge integration, knowledge production (hypothesis formulation), knowledge querying and knowledge maintenance.ResultsWe implemented a semantically integrated resource named BioGateway, comprising the entire set of the OBO foundry candidate ontologies, the GO annotation files, the SWISS-PROT protein set, the NCBI taxonomy and several in-house ontologies. BioGateway provides a single entry point to query these resources through SPARQL. It constitutes a key component for a Semantic Systems Biology approach to generate new hypotheses concerning systems properties. In the course of developing BioGateway, we faced challenges that are common to other projects that involve large datasets in diverse representations. We present a detailed analysis of the obstacles that had to be overcome in creating BioGateway. We demonstrate the potential of a comprehensive application of Semantic Web technologies to global biomedical data.ConclusionThe time is ripe for launching a community effort aimed at a wider acceptance and application of Semantic Web technologies in the life sciences. We call for the creation of a forum that strives to implement a truly semantic life science foundation for Semantic Systems Biology. Access to the system and supplementary information (such as a listing of the data sources in RDF, and sample queries) can be found at http://www.semantic-systems-biology.org/biogateway.
Project description:A biological system, like any complex system, blends stochastic and deterministic features, displaying properties of both. In a certain sense, this blend is exactly what we perceive as the "essence of complexity" given we tend to consider as non-complex both an ideal gas (fully stochastic and understandable at the statistical level in the thermodynamic limit of a huge number of particles) and a frictionless pendulum (fully deterministic relative to its motion). In this commentary we make the statement that systems biology will have a relevant impact on nowadays biology if (and only if) will be able to capture the essential character of this blend that in our opinion is the generation of globally ordered collective modes supported by locally stochastic atomisms.
Project description:Since the inception of the P50 Research Center in Injury and Peri-operative Sciences (RCIPS) funding mechanism, the National Institute of General Medical Sciences has supported a team approach to science. Many advances in critical care, particularly burns, have been driven by RCIPS teams. In fact, burns that were fatal in the early 1970s, prior to the inception of the P50 RCIPS program, are now routinely survived as a result of the P50-funded research. The advances in clinical care that led to the reduction in postburn death were made by optimizing resuscitation, incorporating early excision and grafting, bolstering acute care including support for inhalation injury, modulating the hypermetabolic response, augmenting the immune response, incorporating aerobic exercise, and developing antiscarring strategies. The work of the Burn RCIPS programs advanced our understanding of the pathophysiologic response to burn injury. As a result, the effects of a large burn on all organ systems have been studied, leading to the discovery of persistent dysfunction, elucidation of the underlying molecular mechanisms, and identification of potential therapeutic targets. Survival and subsequent patient satisfaction with quality of life have increased. In this review article, we describe the contributions of the Galveston P50 RCIPS that have changed postburn care and have considerably reduced postburn mortality.
Project description:Bioinformatics, a discipline that combines aspects of biology, statistics, mathematics, and computer science, is becoming increasingly important for biological research. However, bioinformatics instruction is not yet generally integrated into undergraduate life sciences curricula. To understand why we studied how bioinformatics is being included in biology education in the US by conducting a nationwide survey of faculty at two- and four-year institutions. The survey asked several open-ended questions that probed barriers to integration, the answers to which were analyzed using a mixed-methods approach. The barrier most frequently reported by the 1,260 respondents was lack of faculty expertise/training, but other deterrents-lack of student interest, overly-full curricula, and lack of student preparation-were also common. Interestingly, the barriers faculty face depended strongly on whether they are members of an underrepresented group and on the Carnegie Classification of their home institution. We were surprised to discover that the cohort of faculty who were awarded their terminal degree most recently reported the most preparation in bioinformatics but teach it at the lowest rate.
Project description:I was invited to write this essay on the occasion of my selection as the recipient of the 2012 Bruce Alberts Award for Excellence in Science Education from the American Society for Cell Biology (ASCB). Receiving this award is an enormous honor. When I read the email announcement for the first time, it was more than a surprise to me, it was unbelievable. I joined ASCB in 1996, when I presented a poster and received a travel award. Since then, I have attended almost every ASCB meeting. I will try to use this essay to share with readers one of the best experiences in my life. Because this is an essay, I take the liberty of mixing some of my thoughts with data in a way that it not usual in scientific writing. I hope that this sacrifice of the format will achieve the goal of conveying what I have learned over the past 20 yr, during which time a group of colleagues and friends created a nexus of knowledge and wisdom. We have worked together to build a network capable of sharing and inspiring science all over the world.
Project description:We describe here the development and validation of the Academic Career Readiness Assessment (ACRA) rubric, an instrument that was designed to provide more equity in mentoring, transparency in hiring, and accountability in training of aspiring faculty in the biomedical life sciences. We report here the results of interviews with faculty at 20 U.S. institutions that resulted in the identification of 14 qualifications and levels of achievement required for obtaining a faculty position at three groups of institutions: research intensive (R), teaching only (T), and research and teaching focused (RT). T institutions hire candidates based on teaching experience and pedagogical practices and ability to serve diverse student populations. RT institutions hire faculty on both research- and teaching-related qualifications, as well as on the ability to support students in the laboratory. R institutions hire candidates mainly on their research achievements and potential. We discuss how these hiring practices may limit the diversification of the life science academic pathway.
Project description:The May 2012 Sackler Colloquium on "The Science of Science Communication" brought together scientists with research to communicate and scientists whose research could facilitate that communication. The latter include decision scientists who can identify the scientific results that an audience needs to know, from among all of the scientific results that it would be nice to know; behavioral scientists who can design ways to convey those results and then evaluate the success of those attempts; and social scientists who can create the channels needed for trustworthy communications. This overview offers an introduction to these communication sciences and their roles in science-based communication programs.