Epigenetic profiling of colorectal cancer initiating cells (CC-ICs) to identify bivalently marked genes (H3K4me3 and H3K27me3 ChIP-seq), and investigation of changes in transcriptome following EZH2 inhibition using RNA-seq.
Ontology highlight
ABSTRACT: Epigenetic regulation of transcription plays a crucial role in lineage commitment of embryonic stem cells. Promoters of key lineage-specific differentiation genes are found in a repressed bivalent state, having both activating H3K4me3 and repressive H3K27me3 histone marks, making them poised for transcription upon loss of H3K27me3 in response to environmental cues. Whether the tumour-initiating, self-renewing, cancer-initiating cells (C-ICs) have similar epigenetic regulatory mechanism that prevent lineage commitment is unknown. In order to investigate bivalently marked and repressed promoters, we used a patient-derived CC-IC enriched model to identify the changes in transcriptome following inhibition of EZH2, the H3K27 methyltransferase. We also performed ChIP-seq for H3K27me3 and H3K4me3 at baseline in order to identify repressed and bivalently marked promoters.
PROVIDER: EGAS00001003003 | EGA |
REPOSITORIES: EGA
ACCESS DATA