Project description:The aim of this study was to identify HDL and apoE-regulated genes in human placental endothelial cells (HPEC), which are exposed to fetal HDL. HPECs extracted from 5 human placentas were cultivated and treated for 16 h with 15ug/ml fetal HDL, 15ug/ml reconstituted HDL (rHDL), or endothelial basal medium (EBM) as vehicle control. Gene expression analysis from these 3 conditions (5 biological replicates) using 15 Applied Biosystems Human Whole Genome Survey V2.0 Microarrays was perfomed and significantly differentially expressed genes between two different groups (HDL vs control or rHDL vs control) were identified.
Project description:Intrauterine growth restriction (IUGR) represents a major obstetric challenge with perinatal complications and a risk factor of developing disease in adult life. Placental insufficiency is one of the common features accompanying IUGR. The aim of this study was to evaluate global placental gene expression profile in IUGR compared to normal pregnancies. Placental samples were collected by eight IUGR pregnancies with placental insufficiency ascertained by Doppler and eight healthy controls. A 30K Human Genome Survey Microarray v.2.0 (Applied Biosystems) was used to evaluate global gene expression profile. Principal component analysis showed good separation in terms of gene expression patterns between the groups. Pathway analysis with Bonferroni correction for multiple testing showed significant (p<0.05) up-regulation of inflammation mediated by chemokine and cytokine signalling pathway in the IUGR placentas. Genes involved in metabolism of glucocorticoids (HSD11B1 and DHRS2) were found differentially expressed. We found no imprinted genes to be differentially expressed and only one gene involved in epigenetic modifications (MBD3) to be down-regulated in the IUGR placentas, indicating that IUGR due to placental insufficiency is not associated to placental imprinting. Subgroup analysis between pure IUGR and IUGR with preeclampsia placentas showed only 27 differentially expressed genes suggesting common pathophysiology. Eight placental samples from normal human placenta compared to eight human placental samples from patients with intrauterine growth restrictions due to placental insufficiency
Project description:Intrauterine growth restriction (IUGR) represents a major obstetric challenge with perinatal complications and a risk factor of developing disease in adult life. Placental insufficiency is one of the common features accompanying IUGR. The aim of this study was to evaluate global placental gene expression profile in IUGR compared to normal pregnancies. Placental samples were collected by eight IUGR pregnancies with placental insufficiency ascertained by Doppler and eight healthy controls. A 30K Human Genome Survey Microarray v.2.0 (Applied Biosystems) was used to evaluate global gene expression profile. Principal component analysis showed good separation in terms of gene expression patterns between the groups. Pathway analysis with Bonferroni correction for multiple testing showed significant (p<0.05) up-regulation of inflammation mediated by chemokine and cytokine signalling pathway in the IUGR placentas. Genes involved in metabolism of glucocorticoids (HSD11B1 and DHRS2) were found differentially expressed. We found no imprinted genes to be differentially expressed and only one gene involved in epigenetic modifications (MBD3) to be down-regulated in the IUGR placentas, indicating that IUGR due to placental insufficiency is not associated to placental imprinting. Subgroup analysis between pure IUGR and IUGR with preeclampsia placentas showed only 27 differentially expressed genes suggesting common pathophysiology.
Project description:As susceptibility to many adult disorders originates in utero, we here hypothesized that fetal sex influences gene expression in placental cells and produces functional differences in human placentas. We found that fetal sex differentially affects gene expression in a cell-phenotype dependent manner among all four placental cell-phenotypes studied: cytotrophoblasts, syncytiotrophoblasts, arterial endothelial cells and venous endothelial cells. The markedly enriched pathways in males were identified to be signaling pathways for graft-versus-host disease as well as the immune and inflammatory systems, both supporting the hypothesis that there is reduced maternal-fetal compatibility for male fetuses. Our study is the first microarray study investigating sexual dimorphism in purified and characterized somatic cells from a single human tissue, the placenta, that underlines the importance of considering fetal sex as an independent variable in any work using human placenta. Arterial and venous endothelial cells were isolated from eight different placentas, four of each sex. A total of ten placentas were used for isolation of cytotrophoblasts and six for syncytiotrophoblasts, with equal numbers from each sex.
Project description:the goal of this study is to use high-throughput RNA-Sequencing technology to identify genes that are differentially expressed in iron deficient (ID) placentas compared to iron adequate (IA) placentas. A secondary aim is to explore whether iron deficiency has differential impact on male compared with female placental transcriptome.
Project description:In this study, we investigated somatic mutations in T cells in patients with various hematological disorders. To analyze immune cell phenotypes with somatic mutations, we performed scRNA+TCRab sequencing from 9 patients with chronic GVHD and clonal expansions of CD4+ or CD8+ T cells based on T cell receptor sequencing. CD45+ PBMCs (lymphocytes and monocytes) were sorted with BD Influx cell sorter and subjected to sequencing with Chromium VDJ and Gene Expression platform (v1.1, 10X Genomics). Sequencing was performed with Novaseq 6000 (Illumina). The immune cell phenotypes were compared to healthy controls processed in the same laboratory (accession number E-MTAB-11170). Due to data privacy concerns, the raw sequencing data is in the European Genome-Phenome Archive (EGA) under accession code [xxxx] and can be requested through the EGA Data Access Committee.
Project description:Background: Maternal iron deficiency (ID) is associated with poor pregnancy and fetal outcomes. The effect is thought to be mediated by the placenta but there is no comprehensive assessment of placental response to maternal ID. Additionally, whether the influence of maternal ID on the placenta differs by fetal sex is unknown. Objectives: Our primary aim was to identify gene and protein signatures of ID mouse placentas at mid-gestation. A secondary objective was to profile the expression of iron genes in mouse placentas across gestation. Methods: We used a real-time PCR based array to determine the mRNA expression of all known iron genes in mouse placentas at embryonic day (E) 12.5, E14.5, E16.5, and E19.5 (n=3 placentas/time point). To determine the effect of maternal ID, we performed RNA sequencing and proteomics in male and female placentas from ID and iron adequate mice at E12.5 (n=8 dams/diet). Results: In female placentas, six genes including transferrin receptor (Tfrc) and solute carrier family 11 member 2 were significantly changed by maternal ID. An additional 154 genes were altered in male ID placentas. Proteomic analysis quantified 7662 proteins in the placenta. Proteins translated from iron responsive element (IRE) containing mRNAs were altered in abundance; ferritin and ferroportin 1 decreased while TFRC increased in ID placenta. Less than 4% of the significantly altered genes in ID placentas occurred both at the transcriptional and translational levels. Conclusions: Our data demonstrate that the impact of maternal ID on placental gene expression in mice is limited in scope and magnitude at mid-gestation. We provide strong evidence for IRE-based transcriptional and translational coordination of iron gene expression in the mouse placenta. Finally, we discover sexually dimorphic effects of maternal ID on placental gene expression, with more genes and pathways altered in male compared with female mouse placentas.
Project description:Robust identification of placental PPARg target genes via mutliple PPARg-dependence criteria. Integration of differential expression data from Pparg-null, Rxra-null, Med1-nul and Ncoa6-null placentas and from WT and Pparg-null Trophoblast stem cells (TSC) differentiated for 2 or 4 days in the presence or absence of the PPARg agonist Rosiglitazone (Rosi). [Placentas] Three pools of three WT placentas, each vs a litter-matched pool of three Pparg-null placentas Three pools of three WT placentas, each vs a litter-matched pool of three Rxra-null placentas Three pools of three WT placentas, each vs a litter-matched pool of three Med1-null placentas Three pools of three WT placentas, each vs a litter-matched pool of three Ncoa6-null placentas [Trophoblast stem cells (TSC)] Three independent WT TSC lines differentiated for two and four days in the presence or absence of Rosi vs two independent Pparg-null TSC lines differntiated for the same durations in the presence of Rosi
Project description:The human placenta is a rapidly developing organ with a relatively short life span that performs multiple functions until birth. Investigations into molecular mechanisms that control placental plasticity during its maturation might be useful in understanding patho-physiology of pregnancy-specific disorders. We hypothesized that molecular rearrangements and phenotypic adaptations that are necessary for normal placental development and maturation are reflected in its genotype. Our objective was to investigate global gene expression profile in the first and third trimester normal human placentas. 21 women were recruited with uncomplicated pregnancies that were delivered at term and 16 healthy women undergoing surgical abortion at 9-12 weeks gestation. We compared global placental gene expression profile by Human Genome Survey Microarray v.2.0 (Applied Biosystems). A total of 37 hybridisations were performed applying direct comparison design.