Project description:The effects of DNASE1L3 or DNASE1 deficiency on cfDNA methylation was explored in plasma of mice deficient in these nucleases and in DNASE1L3-deficient humans. Compared to wildtype cfDNA, cfDNA in Dnase1l3-deficient mice was significantly hypomethylated, while cfDNA in Dnase1-deficient mice was hypermethylated. The cfDNA hypomethylation in Dnase1l3-deficient mice was due to increased fragmentation and representation from open chromatin regions (OCRs) and CpG islands (CGIs). These findings were absent in Dnase1-deficient mice.
Project description:Haploinsufficiency of the progranulin (PGRN) protein is a leading cause of frontotemporal lobar degeneration (FTLD). Mouse models have been developed to study PGRN functions. However, PGRN deficiency in the commonly used C56BL/6 mouse strain background leads to very mild phenotypes, and pathways regulating PGRN deficiency phenotypes remain to be elucidated. We generated PGRN-deficient mice in the FVB/N background and compared PGRN deficiency phenotypes between C56BL/6 and FVB/N background via immunostaining, western blot, RNA-seq, and proteomics approaches. We also identified sPLA2-IIA as a novel binding partner of PGRN and demonstrated the importance of sPLA2-IIA in modifying PGRN deficiency phenotypes using inhibitor treatment and AAV-mediated overexpression in mouse models. We report that PGRN loss in the FVB/N mouse strain results in earlier onset and stronger FTLD-related and lysosome-related phenotypes. We found that PGRN interacts with sPLA2-IIA, a member of the secreted phospholipase A2 (sPLA2) family member and a key regulator of inflammation that is expressed in FVB/N but not C56BL/6 background. sPLA2-IIA inhibition rescues PGRN deficiency phenotypes and sPLA2-IIA overexpression drives enhanced gliosis and lipofuscin accumulation in PGRN-deficient mice. Additionally, RNA-seq and proteomics analysis revealed that mitochondrial pathways are upregulated in the PGRN-deficient C57BL/6 mice but not in the FVB/N mice. Our studies establish a better mouse model for FTLD-GRN and uncover novel pathways modifying PGRN deficiency phenotypes.
Project description:The effects of DNASE1L3 or DNASE1 deficiency on cfDNA methylation was explored in plasma of mice deficient in these nucleases and in DNASE1L3-deficient humans. Compared to wildtype cfDNA, cfDNA in Dnase1l3-deficient mice was significantly hypomethylated, while cfDNA in Dnase1-deficient mice was hypermethylated. The cfDNA hypomethylation in Dnase1l3-deficient mice was due to increased fragmentation and representation from open chromatin regions (OCRs) and CpG islands (CGIs). These findings were absent in Dnase1-deficient mice.
Project description:We used AAV as a vector to deliver hGRβ to C57BL/6 mouse liver. We collected liver samples for microarray analysis to investigate any phenotype as well as the underlying specific signaling pathway. In particular, we would like to determine if and how hGRβ overexpression in liver affects mGRαâs gene transcription profile in C57BL/6 mice. Three replicates for each group: untreated WT liver, AAV-GFP treated liver, and AAV-hGRB treated liver.
Project description:Iron overload causes the generation of reactive oxygen species, which can lead to lasting damage to the liver and other organs. We studied the effects of iron deficiency and iron overload on the hepatic transcriptional and metabolomic profile in mouse models.