Project description:While animal models have provided key insights into conserved mechanisms of how the lung forms during development, human-specific developmental mechanisms are not always captured. To fully appreciate how developmental defects and disease states alter the function of the lungs, studies in human lung models are important. Here, we sequenced >150,000 single single-cells from 19 healthy human fetal lung tissues from gestational weeks 10-19 and identified at least 58 unique cell types/states contributing to the developing lung. We captured novel dynamic developmental trajectories from various progenitor cells that give rise to ciliated, pulmonary neuroendocrine cells, and other specialized cell types. We also identified four CFTR-expressing progenitor cell types and pinpointed the temporal emergence and spatial localization of these cell types. These developmental dynamics reveal broader epithelial cell plasticity and novel lineage hierarchies that were not previously reported. Combined with spatial transcriptomics, we identified both cell autonomous and non-cell autonomous signalling pathways that may dictate the temporal and spatial emergence of cell lineages. Finally, we showed that human pluripotent stem cell (hPSC)-derived fetal lung models capture similar cell lineage trajectories specifically through progenitor cells that express abundant levels of the CFTR gene. Overall, this study provides a comprehensive single-cell atlas of the developing human lung, outlining the temporal and spatial complexities of cell lineage development and benchmarks fetal lung cultures from hPSC differentiations to similar developmental window.
Project description:While animal models have provided key insights into conserved mechanisms of how the lung forms during development, human-specific developmental mechanisms are not always captured. To fully appreciate how developmental defects and disease states alter the function of the lungs, studies in human lung models are important. Here, we sequenced >150,000 single single-cells from 19 healthy human fetal lung tissues from gestational weeks 10-19 and identified at least 58 unique cell types/states contributing to the developing lung. We captured novel dynamic developmental trajectories from various progenitor cells that give rise to ciliated, pulmonary neuroendocrine cells, and other specialized cell types. We also identified four CFTR-expressing progenitor cell types and pinpointed the temporal emergence and spatial localization of these cell types. These developmental dynamics reveal broader epithelial cell plasticity and novel lineage hierarchies that were not previously reported. Combined with spatial transcriptomics, we identified both cell autonomous and non-cell autonomous signalling pathways that may dictate the temporal and spatial emergence of cell lineages. Finally, we showed that human pluripotent stem cell (hPSC)-derived fetal lung models capture similar cell lineage trajectories specifically through progenitor cells that express abundant levels of the CFTR gene. Overall, this study provides a comprehensive single-cell atlas of the developing human lung, outlining the temporal and spatial complexities of cell lineage development and benchmarks fetal lung cultures from hPSC differentiations to similar developmental window.
Project description:While animal models have provided key insights into conserved mechanisms of how the lung forms during development, human-specific developmental mechanisms are not always captured. To fully appreciate how developmental defects and disease states alter the function of the lungs, studies in human lung models are important. Here, we sequenced >150,000 single single-cells from 19 healthy human fetal lung tissues from gestational weeks 10-19 and identified at least 58 unique cell types/states contributing to the developing lung. We captured novel dynamic developmental trajectories from various progenitor cells that give rise to ciliated, pulmonary neuroendocrine cells, and other specialized cell types. We also identified four CFTR-expressing progenitor cell types and pinpointed the temporal emergence and spatial localization of these cell types. These developmental dynamics reveal broader epithelial cell plasticity and novel lineage hierarchies that were not previously reported. Combined with spatial transcriptomics, we identified both cell autonomous and non-cell autonomous signalling pathways that may dictate the temporal and spatial emergence of cell lineages. Finally, we showed that human pluripotent stem cell (hPSC)-derived fetal lung models capture similar cell lineage trajectories specifically through progenitor cells that express abundant levels of the CFTR gene. Overall, this study provides a comprehensive single-cell atlas of the developing human lung, outlining the temporal and spatial complexities of cell lineage development and benchmarks fetal lung cultures from hPSC differentiations to similar developmental window.
Project description:The gene expression program underlying the specification of human cell types is of fundamental interest. We generated human cell atlases of gene expression and chromatin accessibility in fetal tissues. For gene expression, we applied three-level combinatorial indexing to >110 samples representing 15 organs, profiling ~4 million single cells. We leveraged the literature and other atlases to identify and annotate hundreds of cell types and subtypes, both within and across tissues. Our analyses focus on organ-specific specializations of broadly distributed cell types (e.g. blood, endothelial, epithelial), sites of fetal erythropoiesis (which surprisingly included the adrenal gland) and integration with mouse developmental atlases (e.g. conserved specification of blood cells). These data comprise a rich resource for the exploration of in vivo human gene expression in diverse tissues and cell types.
Project description:While animal models have provided key insights into conserved mechanisms of how the lung forms during development, human-specific developmental mechanisms are not always captured. To fully appreciate how developmental defects and disease states alter the function of the lungs, studies in human lung models are important. Here, we sequenced >150,000 single single-cells from 19 healthy human fetal lung tissues from gestational weeks 10-19 and identified at least 58 unique cell types/states contributing to the developing lung. We captured novel dynamic developmental trajectories from various progenitor cells that give rise to ciliated, pulmonary neuroendocrine cells, and other specialized cell types. We also identified four CFTR-expressing progenitor cell types and pinpointed the temporal emergence and spatial localization of these cell types. These developmental dynamics reveal broader epithelial cell plasticity and novel lineage hierarchies that were not previously reported. Combined with spatial transcriptomics, we identified both cell autonomous and non-cell autonomous signalling pathways that may dictate the temporal and spatial emergence of cell lineages. Finally, we showed that human pluripotent stem cell (hPSC)-derived fetal lung models capture similar cell lineage trajectories specifically through progenitor cells that express abundant levels of the CFTR gene. Overall, this study provides a comprehensive single-cell atlas of the developing human lung, outlining the temporal and spatial complexities of cell lineage development and benchmarks fetal lung cultures from hPSC differentiations to similar developmental window.