Project description:Colorectal cancer arises in part from the cumulative effects of multiple gene lesions. Recent studies in selected cancer types have revealed significant intra-tumor genetic heterogeneity and highlighted its potential role in disease progression and resistance to therapy. We hypothesized the existence of significant intra-tumor genetic heterogeneity in rectal cancers involving variations in localized somatic mutations and copy number abnormalities. Two or three spatially disparate areas from each of six rectal tumors were dissected and subjected to next-generation whole exome DNA sequencing, Oncoscan SNP arrays, and targeted confirmatory sequencing and analysis. The resulting data were integrated to define subclones using SciClone. Mutant-allele tumor heterogeneity (MATH) scores, mutant allele frequency correlation, and mutation percent concordance were calculated, and Copy number analysis including measurement of correlation between samples was performed.
Project description:Single Gland Whole-exome sequencing: building on our prior description of multi-region WES of colorectal tumors and targeted single gland sequencing (E-MTAB-2247), we performed WES of multiple single glands from different sides (right: A and left: B) of two tumors in this study (tumor O and U) on the illumina platform using the Agilent SureSelect 2.0 or illumina Nextera Rapid Capture Exome kit (SureSelect or NRCE, as indicated in the naming of fastq files). Colorectal Cancer Xenograft Whole-exome sequencing: The HCT116 and LoVo Mismatch-Repair-deficient colorectal adenocarcinoma cell lines were obtained from the ATCC and cultured under standard conditions. For both cell lines, a single âfoundingâ cell was cloned and expanded in vitro to ~6M cells. Two aliquots of ~1M cells were subcutaneously injected into opposite flanks (right and left) of a nude mouse and tumors allowed to reach a size of ~1B cells (1cm3) before the animal was sacrificed. Tumor tissue was collected separately from the right and left lesions and DNA was extracted for WES using the illumina TruSeq Exome kit or Nextera Rapid Capture Exome expanded Kits (Truseq or NRCEe), as was DNA from the first passage population (a polyclonal tissue culture for HCT116 and a polyclonal xenograft sample for LoVo), which were employed as a control to study mutation accumulation in culture and post xenotransplantation.
Project description:Colorectal cancer arises in part from the cumulative effects of multiple gene lesions. Recent studies in selected cancer types have revealed significant intra-tumor genetic heterogeneity and highlighted its potential role in disease progression and resistance to therapy. We hypothesized the existence of significant intra-tumor genetic heterogeneity in rectal cancers involving variations in localized somatic mutations and copy number abnormalities. Two or three spatially disparate areas from each of six rectal tumors were dissected and subjected to next-generation whole exome DNA sequencing, Oncoscan SNP arrays, and targeted confirmatory sequencing and analysis. The resulting data were integrated to define subclones using SciClone. Mutant-allele tumor heterogeneity (MATH) scores, mutant allele frequency correlation, and mutation percent concordance were calculated, and Copy number analysis including measurement of correlation between samples was performed. Affymetrix OncoScan V3 arrays were run on all tumor samples. The OncoScan array platform consists of a set of 217k probes designed specifically for profiling tumors. The overall resolution of the assay for detecting copy number change generates data at 50-100kb resolution across a set of 891 cancer genes, and 300-400kb across the rest of the genome. Raw array florescence intensity data generated on the Affymetrix scanners in the form of CEL files were loaded into the OncoScan Console software v.1.1.0 (Affymetrix, Santa Clara, California). Quality control statistics as well as integrated OSCHP files were generated by OncoScan Console. The standard Affymetrix reference control file for OncoScan data was used for processing the arrays.
Project description:Whole exome sequencing was performed on set of 48 DNA samples obtained from 16 EGFR mutated NSCLC patients whose tumors progressed following EGFR-TKI treatment. The DNA samples included baseline biopsy, rebiopsy and blood from the same patient. By comparing the variants in rebiopsy tumors and baseline tumors we aim to understand the genomic alterations responsible for the development of EGFR-TKI resistance in NSCLC patients.
Project description:To efficiently identify genetic susceptibility variants for gastric cancer, including rare coding variants, we performed an exome chip-based array study. We found that a linkage disequilibrium (LD) block containing 2 significant variants in PSCA gene increased the risk and two blocks that included 15 suggested variants including TRIM31, TRIM 40, TRIM 10, and TRIM26 regions, and included one suggested variant and OR2H2 gene showed protective associations with gastric cancer susceptibility. In addition, the PLEC region (rs200893203), FBLN2 region (rs201192415), and EPHA2 region (rs3754334) were associated with increased susceptibility We performed an exome chip-based array study in 329 gastric cancer cases and 683 controls.
Project description:Within the frame of inherited cancer predisposition, single gene carriers of pathogenic variants (PVs) have been extensively represented in the literature, whereas the oligogenic coinheritance of heterozygous PVs in cancer-related genes is a poorly studied event. Currently, due to the increment of cancer survivors, the probability of presenting multiple primary cancers (MPC) is higher. This study included MPC patients ≤45 years without known PVs in common cancer predisposition genes. We used whole exome sequencing (WES) of germline and tumoral DNA, chromosomal microarray analysis (CMA) on germline DNA (patient 1-7, and patient 9-10), and karyotype of patient 8to detect variants associated with the disease. The ten patients included in the study presented a mean of 3 cancers per patient. CMA showed two microduplications and one microdeletion, while WES of the germline DNA identified 1-3 single nucleotide variants of potential interest to the disease in each patient and two additional copy number variants. Most of the identified variants were classified as variants of uncertain significance. The mapping of the germline variants into their pathways showed a possible additive effect of these as the cause of the cancer. Twelve somatic samples from 5 patients were available for sequencing. All the germline variants were also present in the somatic samples, while no second hits were identified in the same genes. The sequencing of patients with early cancers, family history and multiple tumors is already a standard of care. However, the growing evidence suggests that patient´s assessment should not stop at the identification of one PV in a cancer predisposition gene.
Project description:Background: Germline polymorphisms can influence gene expression networks in normal mammalian tissues and can affect disease susceptibility. We and others have shown that analysis of this genetic architecture can identify single genes and whole pathways that influence complex traits including inflammation and cancer susceptibility. Whether germline variants affect gene expression in tumors which have undergone somatic alterations, and the extent to which these variants influence tumor progression, is unknown. Results: Using an integrated linkage and genomic analysis of a mouse model of skin cancer that produces both benign tumors and malignant carcinomas, we document major changes in germline control of gene expression during skin tumor development resulting from cell selection, somatic genetic events, and changes in the tumor microenvironment. The number of significant expression Quantitative Trait Loci (eQTLs) is progressively reduced in benign and malignant skin tumors when compared to normal skin. However, novel tumor-specific eQTLs are detected for several genes associated with tumor susceptibility, including Interleukin 18, Granzyme E, Sprouty homolog 2, and MAP kinase kinase 4. Conclusions: We conclude that the genetic architecture is substantially altered in tumors, and that eQTL analysis of tumors can identify host factors that influence the tumor microenvironment, MAP kinase signaling, and cancer susceptibility.
Project description:To efficiently identify genetic susceptibility variants for gastric cancer, including rare coding variants, we performed an exome chip-based array study. We found that a linkage disequilibrium (LD) block containing 2 significant variants in PSCA gene increased the risk and two blocks that included 15 suggested variants including TRIM31, TRIM 40, TRIM 10, and TRIM26 regions, and included one suggested variant and OR2H2 gene showed protective associations with gastric cancer susceptibility. In addition, the PLEC region (rs200893203), FBLN2 region (rs201192415), and EPHA2 region (rs3754334) were associated with increased susceptibility
Project description:Anal squamous cell carcinoma (ASCC) is an infrequent tumor. Since 70s, treatment of stages II-III consists on a combination of 5-fluorouracil (5FU), mitomycin C (MMC), and radiotherapy. The aim of this study is the identification of biomarkers that allow personalized treatment and improvement of therapeutic outcomes. Forty-six tumor paraffin samples from ASCC patients were analyzed by whole-exome sequencing. Single nucleotide polymorphisms and copy number variants (CNVs) were identified and their relation to disease-free survival (DFS) was studied using BRB Array Tool and Kaplan-Meier analyses. Obtained findings were validated in an independent retrospective cohort of 101 ASCC patients with stages I-III from eleven hospitals within the Multidisciplinary Spanish Digestive Cancer Group (GEMCAD) using qPCR Copy Number Assays. GEMCAD validation cohort was also analyzed using mass spectrometry proteomics to assess the biological features of these tumors.