Project description:Background: Copy number variation is an important component of genetic variation in higher eukaryotes. The extent of natural copy number variation in C. elegans is unknown outside of 2 highly divergent wild isolates and the canonical N2 Bristol strain. Results: We have used array comparative genomic hybridization (aCGH) to detect copy number variation in the genomes of 12 natural isolates of Caenorhabditis elegans. Deletions relative to the canonical N2 strain are more common in these isolates than duplications, and indels are enriched in multigene families on the autosome arms. Among the strains in our study, the Hawaiian and Madeiran strains (CB4856 and JU258) carry the largest number of deletions, followed by the Vancouver strain (KR314). Overall we detected 510 different deletions affecting 1136 genes, or over 5% of the genes in the canonical N2 genome. The indels we identified had a median length of 2.7 kb. Since many deletions are found in multiple isolates, deletion loci were used as markers to derive an unrooted tree to estimate genetic relatedness among the strains. Conclusion: Copy number variation is extensive in C. elegans, affecting over 5% of the genes in the genome. The deletions we have detected in natural isolates of C. elegans contribute significantly to the number of deletion alleles available to researchers. The relationships between strains are complex and different regions of the genome possess different genealogies due to recombination throughout the natural history of the species, which may not be apparent in studies utilizing smaller numbers of genetic markers. Twelve C. elegans natural isolate samples were studied. There were no replicates or dye-swap hybridizations.
Project description:Background: Copy number variation is an important component of genetic variation in higher eukaryotes. The extent of natural copy number variation in C. elegans is unknown outside of 2 highly divergent wild isolates and the canonical N2 Bristol strain. Results: We have used array comparative genomic hybridization (aCGH) to detect copy number variation in the genomes of 12 natural isolates of Caenorhabditis elegans. Deletions relative to the canonical N2 strain are more common in these isolates than duplications, and indels are enriched in multigene families on the autosome arms. Among the strains in our study, the Hawaiian and Madeiran strains (CB4856 and JU258) carry the largest number of deletions, followed by the Vancouver strain (KR314). Overall we detected 510 different deletions affecting 1136 genes, or over 5% of the genes in the canonical N2 genome. The indels we identified had a median length of 2.7 kb. Since many deletions are found in multiple isolates, deletion loci were used as markers to derive an unrooted tree to estimate genetic relatedness among the strains. Conclusion: Copy number variation is extensive in C. elegans, affecting over 5% of the genes in the genome. The deletions we have detected in natural isolates of C. elegans contribute significantly to the number of deletion alleles available to researchers. The relationships between strains are complex and different regions of the genome possess different genealogies due to recombination throughout the natural history of the species, which may not be apparent in studies utilizing smaller numbers of genetic markers.
Project description:Although localized haploid phasing can be achieved using long read genome sequencing without parental data, reliable chromosome-scale phasing remains a great challenge. Given that sperm is a natural haploid cell, single-sperm genome sequencing can provide a chromosome-wide phase signal. Due to the limitation of read length, current short-read-based single-sperm genome sequencing methods can only achieve SNP haplotyping and come with difficulties in detecting and haplotyping structural variations (SVs) in complex genomic regions. To overcome these limitations, we developed a long-read-based single-sperm genome sequencing method and a corresponding data analysis pipeline that can accurately identify crossover events and chromosomal level aneuploidies in single sperm and efficiently detect SVs within individual sperm cells. Importantly, without parental genome information, our method can accurately conduct de novo phasing of heterozygous SVs as well as SNPs from male individuals at the whole chromosome scale. The accuracy for phasing of SVs was as high as 98.59% using 100 single sperm cells, and the accuracy for phasing of SNPs was as high as 99.95%. Additionally, our method reliably enabled deduction of the repeat expansions of haplotype-resolved STRs/VNTRs in single sperm cells. Our method provides a new opportunity for studying haplotype-related genetics in mammals.
Project description:Natural products exhibit potential as candidates for developing multi-target agents for Alzheimer's disease treatment. The aim of this study is to utilize network-based medicine to identify novel natural products for Alzheimer's disease, and investigate their efficacy and mechanisms of action. In this study, we identified (-)-Vestitol and Salviolone as new potential natural products for treating Alzheimer's disease via an Alzheimer's disease-related pathway-gene network. Both natural products improved the cognition of APP/PS1 transgenic mice, reduced Aβ deposition, and lowered soluble toxic Aβ levels in the brain. Notably, a synergistic effect was observed when the two natural products were combined. Transcriptomic analysis and qRT-PCR experiments revealed that the synergistic mechanism of (-)-Vestitol and Salviolone combination is associated with the regulation of a broader range of AD-related pathways and genes, particularly the neuroactive ligand-receptor interaction pathway and calcium signaling pathway.
Project description:The role natural selection plays in governing the locations and early evolution of copy number mutations remains largely unexplored. Here we employ high-density full-genome tiling arrays to create a fine-scale genomic map of copy number polymorphisms (CNPs) in Drosophila melanogaster. We inferred a total of 2,658 independent CNPs, 56% of which overlap genes. These include CNPs likely to be under positive selection, most notably high frequency duplications encompassing toxin-response genes. The locations and frequencies of CNPs are strongly shaped by purifying selection with deletions under stronger purifying selection than duplications. Among duplications, those overlapping exons or introns and those falling on the X-chromosome seem to be subject to the strongest purifying selection. In order to characterize copy number polymorphisms (CNPs) in Drosophila malanogaster, we applied comparative genome hybridization (CGH) using tiling arrays covering the full euchromatic genome of Drosophila melanogaster. We inferred copy number changes with a Hidden Markov Model (HMM) that returned the posterior probabilities for copy number by comparing DNA hybridization intensities between natural isolates and the reference genome strain. Training data for copy number changes were obtained via hybridization with a line known to contain a ~200kb homozygous duplication and from a set of 52 validated homozygous deletions. The probabilities of mutation were parsed to make CNP calls. Key words: comparative genomic hybridization, CGH, copy number polymorphism, CNP, copy number variation, CNV, duplication, deletion
Project description:The study of natural genetic variation for plant disease resistance responses is a complementary approach to utilizing mutants to elucidate genetic pathways. While some key genes involved in pathways controlling disease resistance, and signaling intermediates such as salicylic acid (SA) and jasmonic acid (JA), have been identified through mutational analyses, the use of genetic variation in natural populations permits the identification of change-of-function alleles, which likely act in a quantitative manner. Whole genome microarrays, such as Affymetrix GeneChips, allow for molecular characterization of the disease response at a genomics level and characterization of differences in gene expression due to natural variation. Differences in the level of gene expression, or expression level polymorphisms (ELPs), can be mapped in a segregating population to identify regulatory quantitative trait loci (expression QTLs, e-QTLs) affecting host resistance responses. We assessed Arabidopsis accessions Bayreuth-0 (Bay-0) and Shahdara (Sha) for natural variation in the response to JA. We treated vegetatively grown plants with either JA or a control solution (Silwet), and harvested the plants 4, 28, or 52 hours after chemical treatment. We present Affymetrix GeneChip microarray expression data for 2 biological replications of the control (Silwet) samples for Bay-0 and Sha. These GeneChips were used to generate genetic markers which allowed the development of high-density haplotype maps of a Bay-0 x Sha RIL population.
Project description:The study of natural genetic variation for plant disease resistance responses is a complementary approach to utilizing mutants to elucidate genetic pathways. While some key genes involved in pathways controlling disease resistance, and signaling intermediates such as salicylic acid (SA) and jasmonic acid (JA), have been identified through mutational analyses, the use of genetic variation in natural populations permits the identification of change-of-function alleles, which likely act in a quantitative manner. Whole genome microarrays, such as Affymetrix GeneChips, allow for molecular characterization of the disease response at a genomics level and characterization of differences in gene expression due to natural variation. Differences in the level of gene expression, or expression level polymorphisms (ELPs), can be mapped in a segregating population to identify regulatory quantitative trait loci (expression QTLs, e-QTLs) affecting host resistance responses. We assessed Arabidopsis accessions Bayreuth-0 (Bay-0) and Shahdara (Sha) for natural variation in the response to SA. We treated vegetatively grown plants with either SA or a control solution (Silwet), and harvested the plants 4, 28, or 52 hours after chemical treatment. We present Affymetrix GeneChip microarray expression data for 2 biological replications of the control (Silwet) samples for Bay-0 and Sha. These GeneChips were used to generate genetic markers which allowed the development of high-density haplotype maps of a Bay-0 x Sha RIL population.
Project description:Molecular genetic research relies heavily on the ability to detect polymorphisms in DNA. Single nucleotide polymorphisms (SNPs) are the most frequent form of DNA variation in the genome. In combination with a PCR assay, the corresponding SNP can be analyzed as a derived cleaved amplified polymorphic sequence (dCAPS) marker. The dCAPS method exploits the well-known specificity of a restriction endonuclease for its recognition site and can be used to virtually detect any SNP. Here, we describe the use of the dCAPS method for detecting single-nucleotide changes by means of a barley EST, CK569932, PCR-based marker.