Transcriptome analysis of conditional mutations in the genes encoding six different essential proteins that influence Sen1-dependent termination in Saccharomyces cerevisiae
Ontology highlight
ABSTRACT: The information stored in the DNA of a cell’s chromosomes is transmitted to the rest of the cell by transcribing the DNA into RNA copies or “transcripts”. The fidelity of this process, and thus the health of the cell, depends critically on the proper function of proteins that direct transcription. Since hundreds of genes, each specifying a unique RNA transcript, are arranged in tandem along each chromosome, the beginning and end of each gene must be marked in the DNA sequence. Although encoded in DNA, the signal for terminating an RNA transcript is usually recognized in the transcript itself. We examined the genome-wide functional targets of six proteins implicated in transcription termination by identifying transcripts whose structure or abundance is altered by a mutation that compromises the activity of each protein. For a small minority of transcripts, a mutation in any of the six proteins disrupts termination. Much more commonly, a transcript is affected by a mutation in only one or a few of the six proteins, revealing the varying extent to which the proteins cooperate with one another. We discovered affected transcripts that were not known to be controlled by any of the six proteins, including a cohort of genes required for meiosis.
ORGANISM(S): Saccharomyces cerevisiae
PROVIDER: GSE100283 | GEO | 2017/06/22
SECONDARY ACCESSION(S): PRJNA391250
REPOSITORIES: GEO
ACCESS DATA