Gene expression profiling of Dox-activable K-ras mutation in human primary bronchial epithelial cell line
Ontology highlight
ABSTRACT: We constructed a primary lung cell model to permit regulated expression of KRASG12D. To do this, we leveraged a non-transformed, immortalized, human primary bronchial epithelial cell line (HBEC; hTert, CDK4, TP53 knockdown) that remains anchorage dependent and do not develop tumors when implanted into mice. We next modified these cells by stably integrating a regulatable KRASG12D allele, iKRASG12D, such that physiological expression of mutant KRAS is activated upon addition of doxycycline. The HBEC-iKRAS (WT) cell line and HBEC-iKRASG12D (MUT) cell line were propagated with or without Doxycycline (500ng/ml) respectively. RNA profiling of HBEC-iKRASG12D and HBEC-iKRASWT cells revealed widespread changes for HBECs harboring the activated KRAS allele in the presence of Dox. Within the KRASG12D-induced genes, the Molecular Signatures Database identified the oncogenic RAS signature as a top-enriched gene set. Upregulation of Ras signaling in Dox-treated HBEC-iKRASG12D cells was also supported by a significant overlap with a KRAS signature previously characterized by Singh et al.
Project description:Cancer cells that express oncogenic alleles of RAS typically require sustained expression of the mutant allele for survival, but the molecular basis of this oncogene dependency remains incompletely understood. To identify genes that can functionally substitute for oncogenic RAS, we systematically expressed 15,294 open reading frames in a human KRAS-dependent colon cancer cell line engineered to express an inducible KRAS-specific shRNA. We found 147 genes that promoted survival in the setting of KRAS suppression. In this model, the transcriptional co-activator YAP1 rescued cell viability in KRAS-dependent cells upon suppression of KRAS and was required for KRAS-induced cell transformation. Acquired resistance to Kras suppression in a Kras-driven murine lung cancer model also involved increased YAP1 signaling. KRAS and YAP1 converge on the transcription factor FOS and activate a transcriptional program involved in regulating the epithelial-mesenchymal transition (EMT). Together, these findings implicate transcriptional regulation of EMT by YAP1 as a significant component of oncogenic RAS signaling. We used microarrays to compare gene expression in HCT116 cells in which we suppressed KRAS expression doxycycline-inducible shRNA targeting KRAS compared to cells treated with media alone (no shKRAS induced). We express KRAS, LacZ, and YAP1 in each condition to identify genes transcriptionally involved in the rescue of KRAS suppression. HCT116 cells harboring doxycycline-inducible shKRAS (HCTtetK) expressing either LacZ, KRAS, or YAP1, were treated with doxycycline for 30 hours to suppress KRAS. Untreated (no doxycycline) cells expressing each ORF were used as control. Total RNA was collected using PerfectPure RNA Cultured Cell Kit (5Prime) and expression profiling was performed on Human Genome U133A 2.0 Array (Affymetrix) using the Dana Farber Cancer Institute Microarray Core.
Project description:Microarray expression data generated to compare the biological impact of KrasG12D allelic duplication in p53null mouse embryonic fibroblasts (MEFs). The RAS/MAPK-signalling pathway is frequently deregulated in non-small cell lung cancer (NSCLC), often through activating mutations in KRAS. Mouse models demonstrated that activation of a single endogenous mutant Kras allele is sufficient to promote lung tumour formation, but acquisition of other genetic alterations is required for malignant progression. Using a well-established lung cancer mouse model we recently demonstrated that advanced KrasG12D-driven spontaneous tumours frequently exhibit enhanced MAPK signalling and KrasG12D allelic enrichment (KrasG12D/Kraswild-type>1), implying that mutant Kras copy gains are positively selected during lung cancer progression. To compare the oncogenic impact of a single mutant allele versus additional mutant Kras copy gain, we carried out a comprehensive analysis of mutant Kras homozygous and heterozygous MEFs and lung cancer cells and show that these genotypes are phenotypically distinct. Title: Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities Authors: Emma M Kerr, Edoardo Gaude, Frances K Turrell, Christian Frezza and Carla P Martins
Project description:Cancer cells that express oncogenic alleles of RAS typically require sustained expression of the mutant allele for survival, but the molecular basis of this oncogene dependency remains incompletely understood. To identify genes that can functionally substitute for oncogenic RAS, we systematically expressed 15,294 open reading frames in a human KRAS-dependent colon cancer cell line engineered to express an inducible KRAS-specific shRNA. We found 147 genes that promoted survival in the setting of KRAS suppression. In this model, the transcriptional co-activator YAP1 rescued cell viability in KRAS-dependent cells upon suppression of KRAS and was required for KRAS-induced cell transformation. Acquired resistance to Kras suppression in a Kras-driven murine lung cancer model also involved increased YAP1 signaling. KRAS and YAP1 converge on the transcription factor FOS and activate a transcriptional program involved in regulating the epithelial-mesenchymal transition (EMT). Together, these findings implicate transcriptional regulation of EMT by YAP1 as a significant component of oncogenic RAS signaling Three biological replicates of primary lung adenocarcinoma cells derived from the Kras Lox-STOP-Lox-G12D;p53flox/flox (KP) mouse lung cancer model into which a doxycycline-inducible shRNA targeting Kras expressed from the 3’UTR of GFP was introduced (KP-KrasA cells) were analyzed at timepoints (days) D0, D4, and D21.
Project description:Microarray expression data generated to compare the biological impact of KrasG12D allelic duplication in p53null mouse embryonic fibroblasts (MEFs). The RAS/MAPK-signalling pathway is frequently deregulated in non-small cell lung cancer (NSCLC), often through activating mutations in KRAS. Mouse models demonstrated that activation of a single endogenous mutant Kras allele is sufficient to promote lung tumour formation, but acquisition of other genetic alterations is required for malignant progression. Using a well-established lung cancer mouse model we recently demonstrated that advanced KrasG12D-driven spontaneous tumours frequently exhibit enhanced MAPK signalling and KrasG12D allelic enrichment (KrasG12D/Kraswild-type>1), implying that mutant Kras copy gains are positively selected during lung cancer progression. To compare the oncogenic impact of a single mutant allele versus additional mutant Kras copy gain, we carried out a comprehensive analysis of mutant Kras homozygous and heterozygous MEFs and lung cancer cells and show that these genotypes are phenotypically distinct. Title: Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities Authors: Emma M Kerr, Edoardo Gaude, Frances K Turrell, Christian Frezza and Carla P Martins For MEF generation, KrasLSL-G12D/+ ;p53Fx/Fx mixed background (C57Bl/6/129/Sv) animals were interbred and embryos collected at day E12.5 to overcome KrasLSL-G12D/G12D embryonic lethality and Cre-mediated recombination performed immediately after MEF generation. Cells were cultured in DMEM supplemented with 10% FBS, 2 mM L-Glutamine for one passage and then infected with adenovirus-Cre (5âÃâ107âplaque-forming units/1 x 106 cells). Recombination of LoxP sites was confirmed by PCR analysis. Three independent embryos per genotype were analysed using GPL6887 Illumina MouseWG-6 v2.0 expression beadchip.
Project description:Cancer cells that express oncogenic alleles of RAS typically require sustained expression of the mutant allele for survival, but the molecular basis of this oncogene dependency remains incompletely understood. To identify genes that can functionally substitute for oncogenic RAS, we systematically expressed 15,294 open reading frames in a human KRAS-dependent colon cancer cell line engineered to express an inducible KRAS-specific shRNA. We found 147 genes that promoted survival in the setting of KRAS suppression. In this model, the transcriptional co-activator YAP1 rescued cell viability in KRAS-dependent cells upon suppression of KRAS and was required for KRAS-induced cell transformation. Acquired resistance to Kras suppression in a Kras-driven murine lung cancer model also involved increased YAP1 signaling. KRAS and YAP1 converge on the transcription factor FOS and activate a transcriptional program involved in regulating the epithelial-mesenchymal transition (EMT). Together, these findings implicate transcriptional regulation of EMT by YAP1 as a significant component of oncogenic RAS signaling. We used microarrays to compare gene expression in HCT116 cells in which we suppressed KRAS expression doxycycline-inducible shRNA targeting KRAS compared to cells treated with media alone (no shKRAS induced). We express KRAS, LacZ, and YAP1 in each condition to identify genes transcriptionally involved in the rescue of KRAS suppression.
Project description:The small G-protein KRAS is crucial for mediating gonadotropin-induced events associated with ovulation. However, constitutive expression of KrasG12D in granulosa cells disrupted normal follicle development leading to the persistence of abnormal follicle-like structures containing non-mitotic cells. To determine what factors mediate this potent effect of KrasG12D, gene profiling analyses were done. We also analyzed KrasG12D;Cyp19-Cre and KrasG12D;Pgr-Cre mutant mouse models that express Cre prior to or after the initiation of granulosa cell differentiation, respectively. KrasG12D induced cell cycle arrest in granulosa cells of the KrasG12D;Cyp19-Cre mice but not in the KrasG12D;Pgr-Cre mice, documenting the cell context specific effect of KrasG12D. Expression of KrasG12D silenced the Kras gene, reduced cell cycle activator genes and impaired expression of granulosa cell and oocyte specific genes. Conversely, levels of PTEN and phosphorylated p38MAPK increased markedly in the mutant granulosa cells. Because disrupting Pten in granulosa cells leads to increased proliferation and survival, Pten was disrupted in the KrasG12D mutant mice. The Pten/Kras mutant mice were infertile but lacked GCTs. By contrast, the Ptenfl/fl;KrasG12D;Amhr2-Cre mice developed aggressive ovarian surface epithelial (OSE) cell tumors that did not occur in the Ptenfl/fl;KrasG12D;Cyp19-Cre or Ptenfl/fl;KrasG12D;Pgr-Cre mouse strains. These data document unequivocally that Amhr2-Cre is expressed in and mediates allelic recombination of oncogenic genes in OSE cells. That KrasG12D/Pten mutant granulosa cells do not transform but rather undergo cell cycle arrest indicates that they resist the oncogenic insults of Kras/Pten by robust self-protecting mechanisms that silence the Kras gene and elevate PTEN and phospho-p38MAPK. Experiment Overall Design: Whole ovaries were collected from 26-day-old wild type mice, 26-day-old K-ras conditional mutant mice and 3-month-old K-ras conditional mutant mice. The gene expression profiles of these samples were compared using microarray method.
Project description:To reveal the impact of mutant KRAS on the proteome of Pancreatic Ductal Adenocarcinoma (PDAC) cells, we carried out a quantitative phospho-proteomic analysis of tumour cells isolated from an inducible mouse model of PDAC (iKras PDAC) (Ying et al., 2012). In this model, oncogenic Kras (G12D) expression can be controlled by administration of doxycycline (Dox). A timecourse Dox removal experiment was carried out in which cells with or without Dox removal at 12, 24, 36, and 48 hrs intervals were lysed and analysed by quantitative proteomics using Tandem Mass Tagging (TMT). Two independent biological replicate experiments were carried out, with timecourse samples in each replicate being barcoded and pooled together using TMT 10plex labelling kit (Thermo).
Project description:The maintenance of advanced malignancies relies on continued activity of driver oncogenes, although their rate-limiting role is highly context-dependent with respect to tumor types and associated genetic alterations. Oncogenic Kras mutation is the signature event in human pancreatic ductal adenocarcinoma (PDAC), serving a critical role in tumor initiation. Here, an inducible KrasG12D-driven p53 mutant PDAC mouse model establishes that advanced PDAC remains strictly dependent on continued KrasG12D expression and that KrasG12D serves a vital role in the control of tumor metabolism, through stimulation of glucose uptake and channeling of glucose intermediates through the hexosamine biosynthesis pathway (HBP) and the pentose phosphate pathway (PPP). Notably, these studies reveal that oncogenic Kras regulates ribose biogenesis. Unlike canonical models of PPP-mediated ribose biogenesis, we demonstrate that oncogenic Kras drives intermediates from enhanced glycolytic flux into the non-oxidative arm of the PPP, thereby decoupling ribose biogenesis from NADPNADPH-mediated redox control. Together, this work provides in vivo mechanistic insights into how oncogenic Kras promotes metabolic reprogramming in native tumors and illuminates potential metabolic targets that can be exploited for therapeutic benefit in Kras-driven PDAC. Primary pancreatic tumor lines were established from p48Cre tetO_LKrasG12D ROSA_rtTAL+ p53L+ mice. Five independent tumor lines (iKras1-5) were used for pancreatic injection into nude mice to generate orthotopic tumors. The mice were kept on doxycycline for 2 weeks until obvious tumor formation. Half of the animals were pulled off doxycycline for 24 hours. Tumors with over 75% cellularity were collected for total RNA prepartion. For in vitro expression profiles, the same five tumor lines were cultured in the presence or absence of doxycycline for 24 hours and total cellular RNA was prepared. For control samples, two independent tumor lines from LSL-KrasG12D p53L+ tumors were cultured in the presence or absence of doxycycline for 24 hours and total cellular RNA was prepared.
Project description:To reveal the impact of mutant KRAS expression on the proteome of Pancreatic Ductal Adenocarcinoma (PDAC) cells, we carried out a timecourse quantitative proteomic analysis of tumour cells isolated from an inducible mouse model of PDAC (iKras PDAC) (Ying et al., 2012). In this model, oncogenic Kras (G12D) expression can be controlled by administration of doxycycline(Dox). Cells were grown in the absence of Dox for 48 hrs, before being treated with or without Dox for 4, 8, 12, 24, and 36 hrs, followed by total lysis and quantitative proteomics analysis using Tandem Mass Tagging (TMT). A total of 2 biological replicate experiments were analysed, with all samples from each replicate barcoded and pooled together using TMT 10plex labelling kit (Thermo).
Project description:The experiment is a study of the effects of signal strength in the Ras pathway. In particular, we studied a gain-of-function mutant of Kras, KrasG12D. We generated these mutant mice and performed microarray analyses on RNA extracted from whole skin, comparing KrasG12D mice to wild-type mice, with three replicates of each.