Mapping translocation breakpoints by next-generation sequencing
Ontology highlight
ABSTRACT: Balanced chromosome rearrangements (BCRs) can cause genetic diseases by disrupting or inactivating specific genes, and the characterisation of breakpoints in disease-associated BCRs has been instrumental in the molecular elucidation of a wide variety of genetic disorders. However, mapping chromosome breakpoints using traditional methods, such as in situ hybridization with fluorescent dye-labeled bacterial artificial chromosome clones (BAC-FISH), is rather laborious and time consuming. In addition, the resolution of BAC-FISH is often insufficient to unequivocally identify the disrupted gene. To overcome these limitations, we have performed shotgun sequencing of flow-sorted derivative chromosomes using ‘next generation’ (Solexa/Illumina) multiplex sequencing-by-synthesis technology. As shown here for three different disease-associated BCRs, the coverage attained by this platform is sufficient to bridge the breakpoints by PCR amplification, and this procedure allows to determine their exact nucleotide positions within few weeks. Its implementation will greatly facilitate large-scale breakpoint mapping and gene finding in patients with disease-associated balanced translocations. Keywords: Array CGH
ORGANISM(S): Homo sapiens
PROVIDER: GSE10115 | GEO | 2008/04/01
SECONDARY ACCESSION(S): PRJNA108267
REPOSITORIES: GEO
ACCESS DATA