Transcriptomics

Dataset Information

0

A systems approach to delineate functions of YAP family members


ABSTRACT: Duplication of genes encoding transcription factors plays an essential role in driving phenotypic variation. Because regulation can occur at multiple levels, it is often difficult to discern how each duplicated factor achieves its regulatory specificity. In these cases, a systems approach may distinguish the role of each factor by integrating complementary large-scale measurements of the regulatory network. To explore such an approach, we integrate growth phenotypes, promoter binding profiles, and gene expression patterns to model the DNA damage response network controlled by the Yeast-specific AP-1 (YAP) family of transcription factors. This analysis reveals that YAP regulatory specificity is achieved by at least three mechanisms: (a) Divergence of DNA-binding sequences into two subfamilies; (b) Condition-specific combinatorial regulation by multiple Yap factors; and (c) Interactions of Yap 1, 4, and 6 with chromatin remodeling proteins. Additional microarray experiments establish that Yap4 and 6 regulate gene expression through interactions with the histone deacetylase, Hda1. The data further highlight differences among Yap paralogs in terms of their regulatory mode of action (activation vs. repression). This study suggests how other large TF families might be disentangled in the future. Keywords: gene expression microarray and ChIP-chip

ORGANISM(S): Saccharomyces cerevisiae

PROVIDER: GSE10146 | GEO | 2008/02/04

SECONDARY ACCESSION(S): PRJNA108695

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2008-02-03 | E-GEOD-10146 | biostudies-arrayexpress
2024-11-23 | PXD055366 | Pride
2014-04-02 | E-GEOD-56445 | biostudies-arrayexpress
| PRJNA293163 | ENA
2024-12-31 | GSE236855 | GEO
2009-08-29 | E-GEOD-13047 | biostudies-arrayexpress
2016-05-09 | GSE80194 | GEO
2016-12-01 | GSE77904 | GEO
2016-03-23 | E-GEOD-70319 | biostudies-arrayexpress
2015-12-08 | E-GEOD-70254 | biostudies-arrayexpress