Landscape and evolution of tissue-specific alternative polyadenylation across Drosophila species
Ontology highlight
ABSTRACT: we generated developmental and tissue-specific 3'-seq libraries from D. yakuba and D. virilis to study the role of alternative polyadenylation across Drosophila species
Project description:BACKGROUND:Drosophila melanogaster has one of best-described transcriptomes of any multicellular organism. Nevertheless, the paucity of 3'-sequencing data in this species precludes comprehensive assessment of alternative polyadenylation (APA), which is subject to broad tissue-specific control. RESULTS:Here, we generate deep 3'-sequencing data from 23 developmental stages, tissues, and cell lines of D. melanogaster, yielding a comprehensive atlas of ~ 62,000 polyadenylated ends. These data broadly extend the annotated transcriptome, identify?~?40,000 novel 3' termini, and reveal that two-thirds of Drosophila genes are subject to APA. Furthermore, we dramatically expand the numbers of genes known to be subject to tissue-specific APA, such as 3' untranslated region (UTR) lengthening in head and 3' UTR shortening in testis, and characterize new tissue and developmental 3' UTR patterns. Our thorough 3' UTR annotations permit reassessment of post-transcriptional regulatory networks, via conserved miRNA and RNA binding protein sites. To evaluate the evolutionary conservation and divergence of APA patterns, we generate developmental and tissue-specific 3'-seq libraries from Drosophila yakuba and Drosophila virilis. We document broadly analogous tissue-specific APA trends in these species, but also observe significant alterations in 3' end usage across orthologs. We exploit the population of functionally evolving poly(A) sites to gain clear evidence that evolutionary divergence in core polyadenylation signal (PAS) and downstream sequence element (DSE) motifs drive broad alterations in 3' UTR isoform expression across the Drosophila phylogeny. CONCLUSIONS:These data provide a critical resource for the Drosophila community and offer many insights into the complex control of alternative tissue-specific 3' UTR formation and its consequences for post-transcriptional regulatory networks.
Project description:Gene annoation and determination of gene expression levels in Drosophila virilis and Drosophila yakuba by deep sequencing. Total RNA-seq data from heads of 2-5 day old mated D virilis and D yakuba females, 1 sample from each species.
Project description:Extensive sex-biased expression has been seen in multiple surveys D. melanogaster. We were interested in broadly sampling sex-biased expression of orthologs and species- or lineage-specific genes in the Drosophila genus. To appropriately assay gene expression in multiple species, we used custom microarrays designed against each of six species that broadly sample the phylogenetic space represented by the newly completed genomes (D. simulans, D. yakuba, D. ananassae, D. pseudoobscura, D. virilis and D. mojavensis) and an array designed against D. melanogaster to determine the overall patterns of sex-biased expression in those species and their chromosome linkage. Keywords: other
Project description:We sequenced mRNA from blastoderm embryos of Drosophila melanogaster, Drosophila yakuba, Drosophila pseudoobscura and Drosophila virilis. Two samples contain pooled mRNA from several species, and the remaining 24 samples contain mRNA from a single species. Methods: Retinal mRNA profiles of Blastoderm embryos