Modulation of gene transcription and epigenetics of colon carcinoma cells by bacterial membrane vesicles
Ontology highlight
ABSTRACT: We have investigated the genomic and epigenetic consequences of co-culturing colorectal carcinoma cells with membrane vesicles from pathogenic bacteria Vibrio cholerae and non-pathogenic commensal bacteria Escherichia coli. Our study has revealed that membrane vesicles from pathogenic and commensal bacteria have a global impact on the gene expression of coloncarcinoma cells. The changes in gene expression correlated positively with both epigenetic changes and chromatin accessibility of promoters at transcription start sites of genes induced by both types of membrane vesicles. Moreover, we have demonstrated that membrane vesicles obtained only from V. cholerae induced the expression of genes associated with tumour differentiation. Altogether, our study suggests that the observed genomic changes in host cells might be due to specific components of membrane vesicles and does not require communication by direct contact with the bacteria.
Project description:The PTS system is a central regulatory cascade in bacteria. Here, Vibrio cholerae PTS role was investagated during biofilm formation
Project description:Investigation of whole genome gene expression level changes in a Vibrio cholerae O395N1 delta-nqrA-F mutant, compared to the wild-type strain. Total RNA recovered from wild-type cultures of VIbrio cholerae O395N1 and its nqrA-F mutant strain. Each chip measures the expression level of 3,835 genes from Vibrio cholerae O1 biovar eltor str. N16961 with twenty average probes/gene, with five-fold technical redundancy.
Project description:PhoP is considered a regulator of virulence despite being conserved in both pathogenic and non-pathogenic Enterobacteriaceae. While Escherichia coli strains represent both non-pathogenic commensal isolates and numerous virulent pathotypes, the PhoP virulence regulator has only been studied in commensal E. coli. To better understand how conserved transcription factors contribute to virulence, we characterized PhoP in pathogenic E. coli. Loss of phoP significantly attenuated E. coli during extraintestinal infection. This was not surprising since we demonstrated that PhoP differentially regulated the transcription of >600 genes. In addition to survival at acidic pH and resistance to polymyxin B, PhoP was required for repression of motility and oxygen-independent changes in the expression of primary dehydrogenase and terminal reductase respiratory chain components. All phenotypes have in common a reliance on an energized membrane. Thus, we hypothesized that PhoP mediated these effects by regulating genes that generate a proton motive force. Indeed, bacteria lacking PhoP exhibited a hyper-polarized membrane, and dissipation of the transmembrane electrochemical gradient increased the susceptibility of the phoP mutant to acidic pH, while inhibiting respiratory generation of the proton gradient restored resistance to antimicrobial peptides independent of lipopolysaccharide modification. These findings demonstrate a connection between PhoP, virulence, and the energized state of the membrane. Comparison of gene expression between wild-type CFT073 and a CFT073 phoP deletion mutant during logarithmic phase growth in LB medium. Three biological replicates were compared from each strain.
Project description:This study is an analysis of changes in gene expression during stringent response in Vibrio cholerae. V. cholerae cells in mid-log were treated with serine hydroxamate and gene expression was compared to untreated cells. Keywords: Stress response, stringent response
Project description:PhoP is considered a regulator of virulence despite being conserved in both pathogenic and non-pathogenic Enterobacteriaceae. While Escherichia coli strains represent both non-pathogenic commensal isolates and numerous virulent pathotypes, the PhoP virulence regulator has only been studied in commensal E. coli. To better understand how conserved transcription factors contribute to virulence, we characterized PhoP in pathogenic E. coli. Loss of phoP significantly attenuated E. coli during extraintestinal infection. This was not surprising since we demonstrated that PhoP differentially regulated the transcription of >600 genes. In addition to survival at acidic pH and resistance to polymyxin B, PhoP was required for repression of motility and oxygen-independent changes in the expression of primary dehydrogenase and terminal reductase respiratory chain components. All phenotypes have in common a reliance on an energized membrane. Thus, we hypothesized that PhoP mediated these effects by regulating genes that generate a proton motive force. Indeed, bacteria lacking PhoP exhibited a hyper-polarized membrane, and dissipation of the transmembrane electrochemical gradient increased the susceptibility of the phoP mutant to acidic pH, while inhibiting respiratory generation of the proton gradient restored resistance to antimicrobial peptides independent of lipopolysaccharide modification. These findings demonstrate a connection between PhoP, virulence, and the energized state of the membrane.
Project description:Horizontally acquired genetic elements (HGEs) plays a major for determination of virulence, antimicrobial resistance, adaptation and evolution in pathogenic bacteria. Conserved integrative mobile genetic elements (MGEs) of Vibrio cholerae contribute in the disease development, antimicrobial resistance and metabolic functions. To understand the dynamics of integrative MGEs and cross talk between MGEs and core genome, engineered genome of V. cholerae was monitored in the presence and absence of horizontally acquired genetic elements. Deletion of more than 250 revealed that CTX contributes to the essentiality of SOS response master regulator LexA in V. cholerae. Also, he core genome encoded RecA helps CTX to bypass the host immunity and replicate in the host cell in the presence of similar prophage in the host chromosome. Finally, our multiomics data reveal importance of MGEs in modulating the level of cellular proteome and metabolome in V. cholerae. This study for the first time engineered the genome of V. cholerae strains to eliminate all the GIs, ICE and prophages from their genome and revealed new interactions between core and acquired genomes. The engineered strain could be a potential candidate for understanding evolution of cholera pathogen and development of therapeutics.
Project description:Investigation of whole genome gene expression level changes in a Vibrio cholerae O395N1 delta-nqrA-F mutant, compared to the wild-type strain.
Project description:In marine Vibrio species, chitin-induced natural transformation enables bacteria to take up DNA from the external environment and integrate it into their genome via homologous recombination. Expression of the master competence regulator TfoX bypasses the need for chitin induction and drives expression of the genes required for competence in several Vibrio species. Here, we show that TfoX expression in two Vibrio campbellii strains, DS40M4 and NBRC 15631, enables high frequencies of natural transformation. Conversely, transformation was not achieved in the model quorum-sensing strain V. campbellii BB120 (previously classified as Vibrio harveyi). Surprisingly, we find that quorum sensing is not required for transformation in V. campbellii DS40M4. This result is in contrast to Vibrio cholerae that requires the quorum-sensing regulator HapR to activate the competence regulator QstR. However, similar to V. cholerae, QstR is necessary for transformation in DS40M4. To investigate the difference in transformation frequencies between BB120 and DS40M4, we used previously studied V. cholerae competence genes to inform a comparative genomics analysis coupled with transcriptomics. BB120 encodes homologs of all known competence genes, but most of these genes were not induced by ectopic expression of TfoX, which likely accounts for the non-functional natural transformation in this strain. Comparison of transformation frequencies among Vibrio species indicates a wide disparity among even closely related strains, with Vibrio vulnificus having the lowest functional transformation frequency. We show that ectopic expression of both TfoX and QstR is sufficient to produce a significant increase in transformation frequency in Vibrio vulnificus.
Project description:Vibrio cholerae is highly motile by the action of a single polar flagellum. The loss of motility reduces the infectivity of V. cholerae, demonstrating that motility is an important virulence factor. FlrC is the sigma-54-dependent positive regulator of flagellar genes. Recently, the genes VC2206 (flgP) and VC2207 (flgO) were identified as being regulated by FlrC by microarray analysis of an flrC mutant. FlgP is reported to be an outer membrane lipoprotein required for motility that functions as a colonization factor. The study reported here focuses on the characterization of flgO, the first gene in the flgOP operon. We show FlgO/P are important for motility, as these mutants have reduced motility phenotypes. The flgO/P mutant populations display fewer motile cells as well as reduced numbers of flagellated cells. The flagella produced by the flgO/P mutant strains are shorter in length than the WT flagella, which can be restored by inhibiting rotation of the flagellum. FlgO is an outer membrane protein that localizes throughout the membrane and not at the flagellar pole. Although FlgO/P do not specifically localize to the flagellum, they are required for flagellar stability. Due to the nature of these motility defects, we established that the flagellum is not sufficient for adherence, rather, motility is the essential factor required for attachment and thus colonization by V. cholerae O1 of the classical biotype. This study reveals a novel mechanism for which the OMPs FlgO and FlgP function in motility to mediate flagellar stability and influence attachment and colonization. Vibrio cholerae O395 vs. rpoN mutant
Project description:We exposed wild-type Vibrio cholerae E7496, multiple Vibrio cholerae virulence factor deleted genes with intact hemolysin A gene [CVD109] and without hemolysin A gene [CVD110] in E7946, and E.coli OP50 to wild-type C.elegans N2 for 18 hours. We used microarrays to detail the global gene expression and identified distinct classes of up-regulated and down-regulated genes during this process. C. elegans were exposed to Vibrio cholerae and E.coli then hybridization on Affymetrix microarray chips.