Whole blood gene expression after stimulation with TLR2 ligands (chitin oligomers, Pam2, Pam3) and the TLR4-ligand LPS
Ontology highlight
ABSTRACT: Chitin is the second most abundant polysaccharide in nature and a biomolecule intimately linked to fungal infection and allergic asthma, conditions that affect millions of patients worldwide. Chitin is known to stimulate multiple mammalian immune cells, but the precise molecular sensing mechanism has not been elucidated, hampering strategies to specifically target chitin-mediated pathologies. The study associated with this microarray dataset uses defined chitin oligomers to identify six chitin subunits as the smallest immunologically active chitin motif and the innate immune receptor TLR2 as the molecular chitin sensor on human and murine immune cells, in vitro and in vivo. The goal of this microarray dataset was to elucidate transcriptional differences of human whole blood cells when responding to chitin, to other TLR2 ligands (Pam2, Pam3), and furthermore to the TLR4 ligand LPS. All four stimulants are compared to each other and to the unstimulated whole blood samples as a reference. We conclude that chitin oligomers elicitd overlapping yet distinct signaling outcomes compared to canonical TLR2 ligands.
Project description:Chitin is the second most abundant polysaccharide in nature and a biomolecule intimately linked to fungal infection and allergic asthma, conditions that affect millions of patients worldwide. Chitin is known to stimulate multiple mammalian immune cells, but the precise molecular sensing mechanism has not been elucidated, hampering strategies to specifically target chitin-mediated pathologies. Using defined chitin oligomers we here identify six chitin subunits as the smallest immunologically active chitin motif and the innate immune receptor TLR2 as the molecular chitin sensor on human and murine immune cells, in vitro and in vivo. Chitin oligomers directly bound TLR2 with nanomolar affinity and elicited overlapping yet distinct signaling outcomes compared to canonical TLR2 ligands. Conversely, chitin oligomers composed of five chitin subunits acted as antagonists of chitin-TLR2 immune activation, hinting to an anti-inflammatory loop already known from plants, to also operate in humans. Of note, small chitin oligomers and biological-based blocking of the TLR2-chitin interaction effectively prevented chitin-mediated inflammation not only in vitro but also in vivo. Collectively, our study elucidates the molecular basis of how chitin is sensed by mammalian immune cells, which has broad impact for chitin-associated inflammatory pathologies. From a translational perspective, our findings further suggests that differently sized chitin oligomers could be developed into novel vaccine adjuvants or immuno-modulatory antagonists for the prevention or treatment of chitin-driven diseases in humans.
Project description:We report the genomic localization of cohesin oligomers in nocodazole arrested yeast cells. Two alleles of SMC3 were expressed in yeast cells, one fused to BirA enzyme and the other tagged with AviTag. Cohesin oligomers were biotinylated and ChIP with streptavidin beads. As control experiments, cohesin localization on chromosome was determined in strains expresses freely diffusable BirA enzyme, where all Smc3 proteins were biotinylated; non-specific ChIP were determined in strains with no BirA.
Project description:Genome-wide analysis of translation has the potential to provide major contributions in understanding the pathophysiology of infection processes, given the complex interplay between pathogens and host cells. This study uncovers the reshaping undergoing in the translational control system of the host in response to staphylococcal α-hemolysin oligomers (rAHL). Keywords: translatome profiling, polysomal profiling, polysomal RNA, translational control, translational profiling, polysome profiling, post-transcriptional regulation, staphylococcal α-hemolysin, pore forming toxins, PTF. The comparison between translatome and transcriptome profiling was used to discover mRNA-specific changes of the SH-SY5Y cells transcriptome and translatome in response to staphylococcal α-hemolysin oligomers (rAHL). To identify translationally regulated mRNAs, gene expression signals derived from the polysomal mRNA populations were compared by microarrays analysis to those obtained from total RNAs. Polysomal mRNA and total mRNA were isolated from SH-SY5Y cells treated with 3nM of extracted oligomers (rAHL) for 2 hours. Cells lysates were collected from untreated cells (control) and from treated cells. All experiments were run in biological triplicates.
Project description:Antisense oligomers (ASOs) such as peptide nucleic acids (PNAs), designed to inhibit the translation of essential bacterial genes, have emerged as attractive sequence- and species-specific programmable RNA antibiotics. Yet, potential drawbacks include unwanted side effects caused by their binding to transcripts other than the intended target. To facilitate the design of PNAs with minimal off-target effects, we developed MASON (Make AntiSense Oligomers Now), a webserver for the design of PNAs that target bacterial mRNAs. MASON generates PNA sequences complementary to the translational start site of a bacterial gene of interest and reports critical sequence attributes and potential off-target sites. We based MASON’s off-target predictions on experiments in which we treated Salmonella enterica serovar Typhimurium with a series of 10mer PNAs derived from a PNA targeting the essential gene acpP but carrying two serial mismatches. Growth inhibition and RNA-sequencing (RNA-seq) data revealed that PNAs with terminal mismatches are still able to target acpP, suggesting wider off-target effects than anticipated. Comparison of these results to an RNA-seq dataset from uropathogenic Escherichia coli (UPEC) treated with eleven different PNAs confirmed our findings are not unique to Salmonella. We believe that MASON’s off-target assessment will improve the design of specific PNAs and other ASOs.
Project description:We demonstrated that AmTARS directly binds TLR2 receptor. Thus, we analysis mRNA expression pattern in mouse bone-marrow-derived macrophage (BMDM) treated with AmTARS and Pam3csk4 known as the TLR2 agonist.
Project description:Primary cortical neurons are established tool to study Tau oligomers-mediated toxicity. We used single-cell RNA seq to identify diverisity of gene expression upon Tau oligomers treatment
Project description:The interaction between monocytes and endothelial cells in inflammation is central to chemoattraction, adhesion, and transendothelial migration. Key players such as selectins and their ligands, integrins and other adhesion molecules and their function in these processes are well studied. Toll-like receptor 2 (TLR2), expressed on monocytes, is critical for sensing invading pathogens and initiating a rapid and effective immune response. However, the extended role of TLR2 in monocyte adhesion and migration has only been partially elucidated. To address this question, we performed several functional cell-based assays using monocyte-like wild type (WT), TLR2-knock-out (KO) and, TLR2-knock-in (KI) THP-1 cells. We found that TLR2 promotes faster and stronger adhesion of monocytes to the endothelium and a more intense endothelial barrier disruption after endothelial activation. In addition, we performed quantitative mass-spectrometry, STRING protein analysis, and RT-qPCR, which revealed the association of TLR2 with specific integrins, but also uncovered novel proteins affected by TLR2. In conclusion, we could show that unstimulated TLR2 affects cell adhesion, endothelial barrier disruption, migration, and actin polymerization.
Project description:Mass spectrometry remains an important method for analysis of modified nucleosides ubiquitously present in cellular RNAs, in particular for ribosomal and transfer RNAs that play crucial roles in mRNA translation and decoding. Furthermore, modifications have effect on the lifetimes of nucleic acids in plasma and cells and are consequently incorporated into RNA therapeutics. To provide an analytical tool for sequence characterization of modified RNAs, we developed Pytheas, an open-source software package for automated analysis of tandem MS data for RNA. This dataset contains the 95 MS/MS spectra of 3-14 nts-long oligomers, used for the training and validation of Pytheas' scoring function.