Expression profiling of MDA-MB-231 and MDA-MB-468 after ALDH1A3 manipulation, all-trans retinoic acid treatment, decitabine treatment
Ontology highlight
ABSTRACT: Retinoids, derivatives of vitamin A, are key physiological molecules with regulatory effects on cell differentiation, proliferation and apoptosis. As a result, they are of interest for cancer therapy. Specifically, models of breast cancer have varied responses to manipulations of the retinoid signaling cascade. This study characterizes the transcriptional response of MDA-MB-231 and MDA-MB-468 breast cancer cells to retinaldehyde dehydrogenase 1A3 (ALDH1A3) and to all-trans retinoic acid (atRA). We demonstrate limited overlap between ALDH1A3-induced gene expression and atRA-induced gene expression in both cell lines, suggesting that the function of ALDH1A3 in breast cancer progression extends beyond its role as a retinaldehyde dehydrogenase. Our data reveals divergent transcriptional responses to atRA, which are largely independent of genomic retinoic acid response elements (RAREs) and consistent with the opposing responses of MDA-MB-231 and MDA-MB-468 to in vivo atRA treatment. We identify transcription factors associated with each gene set. Manipulation of one of the transcription factors (i.e. interferon regulatory factor 1; IRF1) demonstrates that it is the level of atRA-inducible and epigenetically regulated transcription factors that determine expression of target genes (e.g. CTSS, cathepsin S). This study provides a paradigm for complex, combinatorial responses of breast cancer models to atRA treatment, and illustrates the need to characterize RARE-independent responses to atRA in a variety of models.
ORGANISM(S): Homo sapiens
PROVIDER: GSE103426 | GEO | 2017/11/06
SECONDARY ACCESSION(S): PRJNA401792
REPOSITORIES: GEO
ACCESS DATA