The molecular basis of essential fatty acid limitation in Daphnia magna: A transcriptomic approach
Ontology highlight
ABSTRACT: It is widely accepted that in many food webs, the trophic transfer efficiency among primary producers and herbivores is determined by the nutritional value of primary producers. In pelagic freshwater and marine ecosystems, secondary production by herbivorous crustacean zooplankton is often limited by the seston's content of essential ω3 polyunsaturated fatty acids (ω3 PUFAs). However, little is known about the genetic network behind the positive relationship between phytoplankton ω3 PUFA content and zooplankton growth and reproduction. In our experimental study, we analysed gene expression changes of the freshwater cladoceran Daphnia magna under different food regimes differing in their ω3 PUFA composition. To disentangle ω3 PUFA effects from other factors, we fed D. magna with different pure phytoplankton cultures (i.e., algal and cyanobacterial diets) with or without supplementing the essential ω3 PUFA eicosapentaenoic acid (EPA). As hypothesized, we observed enhanced growth on diets supplemented with EPA. We applied an Illumina RNA-seq approach to D. magna from different diet treatments to find and monitor genes that are regulated dependent on EPA availability. Of 26,646 potential protein products (mapped to the D. magna genome), we identified transcriptomic signatures driven by the different food sources. Further analyses revealed specific candidate genes involved in EPA metabolism, irrespective of the basal food source. This allows a first functional annotation of previously uncharacterized genes involved in the EPA-specific response of D. magna and may finally provide a link to molecular processes connected to ω3 PUFA metabolism and conversion and thus trophic transfer efficiency in pelagic food webs.
Project description:The availability of polyunsaturated fatty acids (PUFAs) in food items influences the fitness of organisms at higher trophic levels. Omega 3 and omega 6 fatty acids are essential compounds that cannot be synthesised de novo in these animals. Especially the omega 3 PUFA eicosapentaenoic acid (EPA) is an important molecule, as it is a limiting nutritional component for growth and reproduction in numerous marine and freshwater zooplankton species. With our transcriptomic study in Daphnia magna we address the transcriptomic network behind the metabolism and conversion that is connected to physiological EPA-limitation under temperature stress (20°C vs. 15°C).
Project description:Chemical contamination is a common threat to biota thriving in estuarine and coastal ecosystems. In particular, trace metals tend to accumulate and exert deleterious effects on small invertebrates such as zooplankton, which are essential trophic links between phytoplankton and higher-level consumers in aquatic food webs. Beyond the direct effects of the contamination, we hypothesized that metal exposure could also affect the zooplankton microbiota, which in turn might further impair host fitness. To assess this assumption, copepods (Eurytemora affinis) were sampled in the oligo-mesohaline zone of the Seine estuary and exposed to dissolved copper (25 µg.L-1) over a 72-hour time period. Copepod response to copper treatment was assessed by determining transcriptomic changes in E. affinis along with shifts in its microbiota. Unexpectedly, very few genes were differentially expressed in copper-treated copepods compared to controls, with most of the reported differences involving genes upregulated in males compared to females. In contrast, copper increased the taxonomic diversity indices of the microbiota and resulted in substantial compositional changes at both the phyla and genus levels. Phylogenetic reconstruction of the microbiota further suggested that copper mitigated phylogenetic relatedness of taxa at the basal tree structure of the phylogeny, whereas it strengthened it at the terminal branches. Increased terminal phylogenetic clustering in copper-treated copepods concurred with higher proportions of bacterial genera previously identified as copper resistant (e.g., Pseudomonas, Acinetobacter, and Alkanindiges) and a higher relative abundance of the copA gene encoding a periplasmic inducible multi-copper oxidase. Overall, these results revealed very contrasting responses of E. affinis and its microbiota to copper exposure. The enrichment in micro-organisms likely to perform copper sequestration and/or enzymatic transformation processes, underlines here the need to follow the microbial component during the evaluation of the vulnerability of the zooplankton to the metallic stress.
Project description:The optimal dietary requirement of omega-3 long-chain polyunsaturated fatty acids (ω3 LC-PUFA), namely docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), for Atlantic salmon that promotes optimal growth and health warrants careful investigation. We used 44K microarrays to study the influence of increasing levels of dietary DHA + EPA (0, 1.0 and 1.4% of the diet, as formulated) in the presence of high linoleic acid (LA) on Atlantic salmon growth and liver transcriptome. After a 14-week feeding trial, Atlantic salmon fed diet ω3LC0 (i.e. 0% of DHA + EPA) showed significantly lower final weight and weight gain, and higher feed conversion ratio compared with ω3LC1.0 and ω3LC1.4 diet groups. The microarray experiment identified 55 and 77 differentially expressed probes (Rank Products analyses; PFP < 10%) in salmon fed diets ω3LC1.4 and ω3LC1.0 compared with those fed diet ω3LC0, respectively. The comparison between ω3LC1.4 and ω3LC1.0 revealed 134 differentially expressed probes.
Project description:Mutations in the adiponectin receptor 1 gene (AdipoR1) lead to retinitis pigmentosa and are associated with age-related macular degeneration (AMD). This study explores the effects of AdipoR1 gene deficiency in mice, revealing a striking decline in ω3 polyunsaturated fatty acids (PUFA), an increase in ω6 FAs, and elevated ceramides in the retina. The AdipoR1 deficiency impairs peroxisome proliferator-activated receptor α (PPARα) signaling, which is crucial for FA metabolism, particularly affecting proteins associated with FA transport and oxidation in the retina and retinal pigmented epithelium (RPE). Our lipidomic and proteomic analyses indicate changes that could affect membrane composition and viscosity through altered ω3 PUFA transport and synthesis, suggesting a potential influence of AdipoR1 on these properties. Furthermore, we noted a reduction in the Bardet-Biedl syndrome (BBS) proteins, which are crucial for forming and maintaining photoreceptor outer segments that are PUFA-enriched ciliary structures. Diminution in BBS-proteins content combined with our electron microscopic observations raises the possibility that AdipoR1 deficiency might impair ciliary function. Treatment with inhibitors of ceramide synthesis led to substantial elevation of ω3 LC-PUFAs, alleviating photoreceptor degeneration and improving retinal function. These results serve as the proof of concept for a ceramide-targeted strategy to treat retinopathies linked to PUFA deficiency, including AMD.
Project description:Physiological changes in response to environmental cues are not easily documented in pelagic copepods using traditional methods. Molecular biological tools provide new approaches to the investigation of difficult to sample organisms such as oceanic zooplankton. Here, we describe the development of a species-specific microarray for high-throughput studies of the physiological ecology of the North Atlantic copepod Calanus finmarchicus. An EST database was generated for this species using a normalized cDNA library derived from adult and sub-adult individuals from the Gulf of Maine. Sequence data were clustered into contigs and annotated using Blastx. Target transcripts were selected, and unique, 50 base-pair long, oligomer probes were designed and synthesized for 995 genes. Bioinformatic processing using Blast2GO software provided detailed information on gene function. The selected targets include a broad representation of biological processes, cellular components, and molecular functions. The microarray was tested on both experimental and ecological samples, i.e. food abundance and two morphotypes exhibiting distinct lipid stores, respectively. Differentially regulated transcripts were identified for both comparisons. Two comparisons were performed: 1) Lipid-rich (fat) and Lipid-poor (thin) morphotypes 2) Copepods kept under high food and low food experimental conditions
Project description:<p>Phaeocystis pouchetii (Hariot) Lagerheim, 1893 regularly dominates phytoplankton blooms in the Arctic. Through zooplankton grazing and microbial activity, it is considered to be a key resource for the entire marine food web but the actual relevance of biomass transfer to higher trophic levels is still under discussion. Cell physiology and algal nutritional state are suggested to be major factors controlling the observed variability in zooplankton grazing. However, no data have so far yielded insights into the metabolic state of Phaeocystis populations that would allow testing this hypothesis. Therefore, endometabolic markers of different growth phases were determined in laboratory batch cultures using comparative metabolomics and quantified in different phytoplankton blooms in the field. Metabolites, produced during exponential, early and late stationary growth of P. pouchetii were profiled using gas chromatography-mass spectrometry. Then, metabolites were characterized that correlate with the growth phases using multivariate statistical analysis. Free amino acids characterized exponential growth, whereas the early stationary phase was correlated with sugar alcohols, mono- and disaccharides. In the late stationary phase free fatty acids, sterols and terpenes increased. These marker metabolites were then traced in Phaeocystis blooms during a cruise in the Barents Sea and North Norwegian fjords. About 50 endometabolites of P. pouchetii were detected in natural phytoplankton communities. Their relative abundances at Phaeocystis-dominated stations differed from diatom-dominated stations. Mannitol, scyllo- inositol, 24-methylcholesta-5,22-dien-3β-ol, and several free fatty acids were characteristic for Phaeocystis-dominated blooms. Distinct metabolic profiles were detected in the nutrient- depleted community in the inner Porsangerfjord (<0.5 μM NO3-, <0.1 μM PO4-), with high relative amounts of free mono- and disaccharides indicative for a limited culture. This study, therefore, shows how variable physiology of phytoplankton can alter the metabolic landscape of entire plankton communities.</p>
Project description:Eicosapentaenoic acid in its free fatty acid form (EPA-FFA), 2g daily, is safe and well-tolerated in patients undergoing liver resection surgery for colorectal liver metastasis.Oral EPA incorporates into colorectal liver metastasis tissue. EPA-FFA treatment is associated with reduced vascularity of liver metastases in ω-3 PUFA-naïve patients. Preoperative (median 30 days) EPA-FFA treatment may have prolonged benefit on postoperative overall and disease-free survival. We used whole genome expression array to study whether systemic CCL2 level changes were linked to a specific tumour gene expression profile in colorectal liver metastasis patients treated with EPA-FFA.
Project description:Gene expresion profiles from the scAT following 6 week LC n-3 PUFA and 6 week placebo supplementation were compared Women with PCOS were supplemented with 4g n-3 PUFA (containing 1.8g EPA and DHA) daily for 6 weeks and changes in subcutaneous adipose tissue gene expression was compared with 6 week placebo supplementation.
Project description:The use of high levels of marine fish oil in aquafeeds is a non-sustainable practice. However, more sustainable oils sources from terrestrial plants do not contain long-chain polyunsaturated fatty acids (LC-PUFA). Consequently, feeds based on conventional vegetable oils reduce n-3 LC-PUFA levels in farmed fish. Therefore, the aquaculture industry desperately requires new, sustainable oil sources that contain high levels of n-3 LC-PUFA in order to supply the increasing demand for fish and seafood while maintaining the high nutritional quality of the farmed product. One approach to the renewable supply of n-3 LC-PUFA is metabolic engineering oilseed crops with the capacity to synthesize these essential fatty acids in seeds. In the present study, the oilseed Camelina sativa has been transformed with algal genes encoding the n-3 biosynthetic pathway and expression restricted to the seeds via seed-specific promoters to produce an oil containing > 20% eicosapentaenoic acid (EPA). This oil was investigated as a replacement for marine fish oil in feeds for post-smolt Atlantic salmon. In addition, this study with EPA-rich oil will contribute to our understanding of the biochemical and molecular mechanisms involved in the control and regulation of docosahexaenoic acid (DHA) production from EPA, and will thus better inform our understanding of this key part of the LC-PUFA biosynthetic pathway.
Project description:Currently, the only sustainable alternatives for dietary fish oil (FO) in aquafeeds are vegetable oils (VO) that are devoid of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA). Entirely new sources of n-3 LC-PUFA such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids through de novo production is a potential solution to fill the gap between supply and demand of these important nutrients. Camelina sativa,was metabolically engineered to produce a seed oil (ECO) with > 20 % EPA and its potential to substitute for FO in Atlantic salmon feeds was tested. Fish were fed one of three experimental diets containing FO, wild-type camelina oil (WCO) or ECO as the sole lipid sources for 7-weeks. Inclusion of ECO did not affect any of the performance parameters studied and enhanced apparent digestibility of individual n-6 and n-3 PUFA compared to dietary WCO. High levels of EPA were maintained in brain, liver and intestine (pyloric caeca), and levels of DPA and DHA were increased in liver and intestine of fish fed ECO compared to fish fed WCO likely due to increased LC-PUFA biosynthesis based on up-regulation of the genes. Fish fed WCO and ECO showed slight lipid accumulation within hepatocytes similar to that with WCO, although not significantly different to fish fed FO. The regulation of a small number of genes could be attributed to the specific effect of ECO (311 features) with metabolism being the most affected category. The EPA oil from transgenic Camelina (ECO) could be used as a substitute for FO, however it is a hybrid oil containing both FO (EPA) and VO (18:2n-6) fatty acid signatures that resulted in similarly mixed metabolic and physiological responses.